This analysis shows that the type of storms affecting human health and property are different. Human health is most affected by heat, both in terms of fatalities and injuries. Property damage, on the other hand, is sensitive to different factors. General property damage is greatest in the case of tornados, while crop damage is highest for droughts. The analysis first recodes events into 12 general categories plus a catch-all “other” category. It then presents regressions for each of the outcomes of interest against the event type factor. All models are significant, although the R-squareds are low and more detailed analysis would assess the impact of adding additional variables to the models.
if(!file.exists("ProjectData")){
dir.create("ProjectData")
}
download.file("https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2", "ProjectData/StormData.csv.bz2",method="curl")
mydata<-read.csv("ProjectData/StormData.csv.bz2")
attach(mydata)
## The following object is masked from package:base:
##
## F
table(mydata$EVTYPE)
##
## HIGH SURF ADVISORY COASTAL FLOOD
## 1 1
## FLASH FLOOD LIGHTNING
## 1 1
## TSTM WIND TSTM WIND (G45)
## 4 1
## WATERSPOUT WIND
## 1 1
## ? ABNORMAL WARMTH
## 1 4
## ABNORMALLY DRY ABNORMALLY WET
## 2 1
## ACCUMULATED SNOWFALL AGRICULTURAL FREEZE
## 4 6
## APACHE COUNTY ASTRONOMICAL HIGH TIDE
## 1 103
## ASTRONOMICAL LOW TIDE AVALANCE
## 174 1
## AVALANCHE BEACH EROSIN
## 386 1
## Beach Erosion BEACH EROSION
## 1 3
## BEACH EROSION/COASTAL FLOOD BEACH FLOOD
## 1 2
## BELOW NORMAL PRECIPITATION BITTER WIND CHILL
## 2 1
## BITTER WIND CHILL TEMPERATURES Black Ice
## 3 3
## BLACK ICE BLIZZARD
## 14 2719
## BLIZZARD AND EXTREME WIND CHIL BLIZZARD AND HEAVY SNOW
## 2 1
## Blizzard Summary BLIZZARD WEATHER
## 1 1
## BLIZZARD/FREEZING RAIN BLIZZARD/HEAVY SNOW
## 1 2
## BLIZZARD/HIGH WIND BLIZZARD/WINTER STORM
## 1 1
## BLOW-OUT TIDE BLOW-OUT TIDES
## 1 1
## BLOWING DUST blowing snow
## 4 2
## Blowing Snow BLOWING SNOW
## 3 12
## BLOWING SNOW & EXTREME WIND CH BLOWING SNOW- EXTREME WIND CHI
## 2 1
## BLOWING SNOW/EXTREME WIND CHIL BREAKUP FLOODING
## 1 1
## BRUSH FIRE BRUSH FIRES
## 3 1
## COASTAL FLOODING/EROSION COASTAL EROSION
## 1 1
## Coastal Flood COASTAL FLOOD
## 6 650
## coastal flooding Coastal Flooding
## 2 38
## COASTAL FLOODING COASTAL FLOODING/EROSION
## 143 5
## Coastal Storm COASTAL STORM
## 2 8
## COASTAL SURGE COASTAL/TIDAL FLOOD
## 2 2
## COASTALFLOOD COASTALSTORM
## 1 1
## Cold COLD
## 10 72
## COLD AIR FUNNEL COLD AIR FUNNELS
## 4 2
## COLD AIR TORNADO Cold and Frost
## 1 6
## COLD AND FROST COLD AND SNOW
## 1 1
## COLD AND WET CONDITIONS Cold Temperature
## 1 2
## COLD TEMPERATURES COLD WAVE
## 4 3
## COLD WEATHER COLD WIND CHILL TEMPERATURES
## 4 6
## COLD/WIND CHILL COLD/WINDS
## 539 1
## COOL AND WET COOL SPELL
## 1 1
## CSTL FLOODING/EROSION DAM BREAK
## 2 4
## DAM FAILURE Damaging Freeze
## 1 2
## DAMAGING FREEZE DEEP HAIL
## 6 1
## DENSE FOG DENSE SMOKE
## 1293 10
## DOWNBURST DOWNBURST WINDS
## 2 2
## DRIEST MONTH Drifting Snow
## 1 1
## DROUGHT DROUGHT/EXCESSIVE HEAT
## 2488 13
## DROWNING DRY
## 1 9
## DRY CONDITIONS DRY HOT WEATHER
## 6 1
## DRY MICROBURST DRY MICROBURST 50
## 186 1
## DRY MICROBURST 53 DRY MICROBURST 58
## 1 2
## DRY MICROBURST 61 DRY MICROBURST 84
## 1 1
## DRY MICROBURST WINDS DRY MIRCOBURST WINDS
## 5 1
## DRY PATTERN DRY SPELL
## 1 4
## DRY WEATHER DRYNESS
## 4 1
## DUST DEVEL Dust Devil
## 1 8
## DUST DEVIL DUST DEVIL WATERSPOUT
## 141 1
## DUST STORM DUST STORM/HIGH WINDS
## 427 1
## DUSTSTORM EARLY FREEZE
## 1 1
## Early Frost EARLY FROST
## 1 1
## EARLY RAIN EARLY SNOW
## 1 3
## Early snowfall EARLY SNOWFALL
## 2 5
## Erosion/Cstl Flood EXCESSIVE
## 2 1
## Excessive Cold EXCESSIVE HEAT
## 2 1678
## EXCESSIVE HEAT/DROUGHT EXCESSIVE PRECIPITATION
## 1 1
## EXCESSIVE RAIN EXCESSIVE RAINFALL
## 5 4
## EXCESSIVE SNOW EXCESSIVE WETNESS
## 25 1
## EXCESSIVELY DRY Extended Cold
## 1 1
## Extreme Cold EXTREME COLD
## 2 655
## EXTREME COLD/WIND CHILL EXTREME HEAT
## 1002 22
## EXTREME WIND CHILL EXTREME WIND CHILL/BLOWING SNO
## 6 1
## EXTREME WIND CHILLS EXTREME WINDCHILL
## 1 204
## EXTREME WINDCHILL TEMPERATURES EXTREME/RECORD COLD
## 19 4
## EXTREMELY WET FALLING SNOW/ICE
## 1 2
## FIRST FROST FIRST SNOW
## 1 9
## FLASH FLOOD FLASH FLOOD - HEAVY RAIN
## 54277 2
## FLASH FLOOD FROM ICE JAMS FLASH FLOOD LANDSLIDES
## 5 1
## FLASH FLOOD WINDS FLASH FLOOD/
## 1 1
## FLASH FLOOD/ FLOOD FLASH FLOOD/ STREET
## 2 1
## FLASH FLOOD/FLOOD FLASH FLOOD/HEAVY RAIN
## 22 1
## FLASH FLOOD/LANDSLIDE FLASH FLOODING
## 1 682
## FLASH FLOODING/FLOOD FLASH FLOODING/THUNDERSTORM WI
## 8 1
## FLASH FLOODS FLASH FLOOODING
## 32 1
## Flood FLOOD
## 1 25326
## FLOOD & HEAVY RAIN FLOOD FLASH
## 2 3
## FLOOD FLOOD/FLASH FLOOD WATCH/
## 1 1
## FLOOD/FLASH Flood/Flash Flood
## 2 1
## FLOOD/FLASH FLOOD FLOOD/FLASH FLOODING
## 624 2
## FLOOD/FLASH/FLOOD FLOOD/FLASHFLOOD
## 1 1
## FLOOD/RAIN/WIND FLOOD/RAIN/WINDS
## 1 6
## FLOOD/RIVER FLOOD Flood/Strong Wind
## 1 1
## FLOODING FLOODING/HEAVY RAIN
## 120 1
## FLOODS FOG
## 3 538
## FOG AND COLD TEMPERATURES FOREST FIRES
## 1 1
## Freeze FREEZE
## 2 74
## Freezing drizzle Freezing Drizzle
## 1 3
## FREEZING DRIZZLE FREEZING DRIZZLE AND FREEZING
## 20 1
## Freezing Fog FREEZING FOG
## 1 45
## Freezing rain Freezing Rain
## 3 7
## FREEZING RAIN FREEZING RAIN AND SLEET
## 250 6
## FREEZING RAIN AND SNOW FREEZING RAIN SLEET AND
## 1 1
## FREEZING RAIN SLEET AND LIGHT FREEZING RAIN/SLEET
## 1 9
## FREEZING RAIN/SNOW Freezing Spray
## 4 1
## Frost FROST
## 4 53
## Frost/Freeze FROST/FREEZE
## 1 1342
## FROST\\FREEZE FUNNEL
## 1 46
## Funnel Cloud FUNNEL CLOUD
## 5 6839
## FUNNEL CLOUD. FUNNEL CLOUD/HAIL
## 1 1
## FUNNEL CLOUDS FUNNELS
## 87 1
## Glaze GLAZE
## 11 32
## GLAZE ICE GLAZE/ICE STORM
## 2 1
## gradient wind Gradient wind
## 2 4
## GRADIENT WIND GRADIENT WINDS
## 3 8
## GRASS FIRES GROUND BLIZZARD
## 1 2
## GUSTNADO GUSTNADO AND
## 6 1
## GUSTY LAKE WIND GUSTY THUNDERSTORM WIND
## 1 3
## GUSTY THUNDERSTORM WINDS Gusty Wind
## 5 1
## GUSTY WIND GUSTY WIND/HAIL
## 23 1
## GUSTY WIND/HVY RAIN Gusty wind/rain
## 1 1
## Gusty winds Gusty Winds
## 2 10
## GUSTY WINDS HAIL
## 53 288661
## HAIL 0.75 HAIL 0.88
## 18 1
## HAIL 075 HAIL 088
## 1 1
## HAIL 1.00 HAIL 1.75
## 6 4
## HAIL 1.75) HAIL 100
## 1 13
## HAIL 125 HAIL 150
## 1 2
## HAIL 175 HAIL 200
## 13 1
## HAIL 225 HAIL 275
## 1 3
## HAIL 450 HAIL 75
## 1 29
## HAIL 80 HAIL 88
## 2 1
## HAIL ALOFT HAIL DAMAGE
## 1 2
## HAIL FLOODING HAIL STORM
## 1 1
## Hail(0.75) HAIL/ICY ROADS
## 1 1
## HAIL/WIND HAIL/WINDS
## 3 2
## HAILSTORM HAILSTORMS
## 3 1
## HARD FREEZE HAZARDOUS SURF
## 7 1
## HEAT HEAT DROUGHT
## 767 1
## Heat Wave HEAT WAVE
## 1 74
## HEAT WAVE DROUGHT HEAT WAVES
## 1 2
## HEAT/DROUGHT Heatburst
## 1 1
## HEAVY LAKE SNOW HEAVY MIX
## 25 8
## HEAVY PRECIPATATION Heavy Precipitation
## 1 2
## HEAVY PRECIPITATION Heavy rain
## 1 3
## Heavy Rain HEAVY RAIN
## 16 11723
## HEAVY RAIN AND FLOOD Heavy Rain and Wind
## 1 4
## HEAVY RAIN EFFECTS HEAVY RAIN; URBAN FLOOD WINDS;
## 1 1
## HEAVY RAIN/FLOODING Heavy Rain/High Surf
## 2 1
## HEAVY RAIN/LIGHTNING HEAVY RAIN/MUDSLIDES/FLOOD
## 1 1
## HEAVY RAIN/SEVERE WEATHER HEAVY RAIN/SMALL STREAM URBAN
## 2 1
## HEAVY RAIN/SNOW HEAVY RAIN/URBAN FLOOD
## 1 1
## HEAVY RAIN/WIND HEAVY RAINFALL
## 4 3
## HEAVY RAINS HEAVY RAINS/FLOODING
## 26 9
## HEAVY SEAS HEAVY SHOWER
## 2 2
## HEAVY SHOWERS HEAVY SNOW
## 1 15708
## HEAVY SNOW FREEZING RAIN HEAVY SNOW & ICE
## 1 1
## HEAVY SNOW AND HEAVY SNOW AND HIGH WINDS
## 1 2
## HEAVY SNOW AND ICE HEAVY SNOW AND ICE STORM
## 2 2
## HEAVY SNOW AND STRONG WINDS HEAVY SNOW ANDBLOWING SNOW
## 1 1
## Heavy snow shower HEAVY SNOW SQUALLS
## 1 32
## HEAVY SNOW-SQUALLS HEAVY SNOW/BLIZZARD
## 15 3
## HEAVY SNOW/BLIZZARD/AVALANCHE HEAVY SNOW/BLOWING SNOW
## 1 1
## HEAVY SNOW/FREEZING RAIN HEAVY SNOW/HIGH
## 2 1
## HEAVY SNOW/HIGH WIND HEAVY SNOW/HIGH WINDS
## 1 1
## HEAVY SNOW/HIGH WINDS & FLOOD HEAVY SNOW/HIGH WINDS/FREEZING
## 1 1
## HEAVY SNOW/ICE HEAVY SNOW/ICE STORM
## 5 2
## HEAVY SNOW/SLEET HEAVY SNOW/SQUALLS
## 1 2
## HEAVY SNOW/WIND HEAVY SNOW/WINTER STORM
## 1 1
## HEAVY SNOWPACK Heavy Surf
## 1 3
## HEAVY SURF Heavy surf and wind
## 84 1
## HEAVY SURF COASTAL FLOODING HEAVY SURF/HIGH SURF
## 1 228
## HEAVY SWELLS HEAVY WET SNOW
## 1 1
## HIGH HIGH SWELLS
## 1 1
## HIGH WINDS HIGH SEAS
## 1 8
## High Surf HIGH SURF
## 9 725
## HIGH SURF ADVISORIES HIGH SURF ADVISORY
## 1 4
## HIGH SWELLS HIGH TEMPERATURE RECORD
## 5 3
## HIGH TIDES HIGH WATER
## 2 6
## HIGH WAVES High Wind
## 3 2
## HIGH WIND HIGH WIND (G40)
## 20212 2
## HIGH WIND 48 HIGH WIND 63
## 1 1
## HIGH WIND 70 HIGH WIND AND HEAVY SNOW
## 1 1
## HIGH WIND AND HIGH TIDES HIGH WIND AND SEAS
## 2 1
## HIGH WIND DAMAGE HIGH WIND/ BLIZZARD
## 2 1
## HIGH WIND/BLIZZARD HIGH WIND/BLIZZARD/FREEZING RA
## 6 1
## HIGH WIND/HEAVY SNOW HIGH WIND/LOW WIND CHILL
## 3 1
## HIGH WIND/SEAS HIGH WIND/WIND CHILL
## 1 1
## HIGH WIND/WIND CHILL/BLIZZARD HIGH WINDS
## 1 1533
## HIGH WINDS 55 HIGH WINDS 57
## 1 1
## HIGH WINDS 58 HIGH WINDS 63
## 1 2
## HIGH WINDS 66 HIGH WINDS 67
## 2 1
## HIGH WINDS 73 HIGH WINDS 76
## 1 1
## HIGH WINDS 80 HIGH WINDS 82
## 2 1
## HIGH WINDS AND WIND CHILL HIGH WINDS DUST STORM
## 1 1
## HIGH WINDS HEAVY RAINS HIGH WINDS/
## 1 1
## HIGH WINDS/COASTAL FLOOD HIGH WINDS/COLD
## 1 5
## HIGH WINDS/FLOODING HIGH WINDS/HEAVY RAIN
## 1 1
## HIGH WINDS/SNOW HIGHWAY FLOODING
## 3 1
## Hot and Dry HOT PATTERN
## 2 1
## HOT SPELL HOT WEATHER
## 2 1
## HOT/DRY PATTERN HURRICANE
## 1 174
## Hurricane Edouard HURRICANE EMILY
## 2 1
## HURRICANE ERIN HURRICANE FELIX
## 7 2
## HURRICANE GORDON HURRICANE OPAL
## 1 9
## HURRICANE OPAL/HIGH WINDS HURRICANE-GENERATED SWELLS
## 1 3
## HURRICANE/TYPHOON HVY RAIN
## 88 2
## HYPERTHERMIA/EXPOSURE HYPOTHERMIA
## 1 1
## Hypothermia/Exposure HYPOTHERMIA/EXPOSURE
## 3 3
## ICE ICE AND SNOW
## 61 1
## ICE FLOES Ice Fog
## 2 2
## ICE JAM Ice jam flood (minor
## 4 1
## ICE JAM FLOODING ICE ON ROAD
## 5 1
## ICE PELLETS ICE ROADS
## 1 1
## ICE STORM ICE STORM AND SNOW
## 2006 1
## ICE STORM/FLASH FLOOD Ice/Snow
## 1 2
## ICE/SNOW ICE/STRONG WINDS
## 3 1
## Icestorm/Blizzard Icy Roads
## 1 4
## ICY ROADS LACK OF SNOW
## 28 1
## Lake Effect Snow LAKE EFFECT SNOW
## 2 21
## LAKE FLOOD LAKE-EFFECT SNOW
## 1 636
## LAKESHORE FLOOD LANDSLIDE
## 23 600
## LANDSLIDE/URBAN FLOOD LANDSLIDES
## 1 8
## Landslump LANDSLUMP
## 1 1
## LANDSPOUT LARGE WALL CLOUD
## 2 1
## LATE FREEZE LATE SEASON HAIL
## 1 1
## LATE SEASON SNOW Late Season Snowfall
## 1 2
## LATE SNOW Late-season Snowfall
## 2 1
## LIGHT FREEZING RAIN Light snow
## 23 1
## Light Snow LIGHT SNOW
## 21 154
## LIGHT SNOW AND SLEET Light Snow/Flurries
## 2 3
## LIGHT SNOW/FREEZING PRECIP Light Snowfall
## 1 1
## LIGHTING LIGHTNING
## 3 15754
## LIGHTNING WAUSEON LIGHTNING AND HEAVY RAIN
## 1 1
## LIGHTNING AND THUNDERSTORM WIN LIGHTNING AND WINDS
## 1 1
## LIGHTNING DAMAGE LIGHTNING FIRE
## 1 1
## LIGHTNING INJURY LIGHTNING THUNDERSTORM WINDS
## 1 1
## LIGHTNING THUNDERSTORM WINDSS LIGHTNING.
## 1 1
## LIGHTNING/HEAVY RAIN LIGNTNING
## 1 1
## LOCAL FLASH FLOOD LOCAL FLOOD
## 1 1
## LOCALLY HEAVY RAIN LOW TEMPERATURE
## 1 7
## LOW TEMPERATURE RECORD LOW WIND CHILL
## 1 1
## MAJOR FLOOD Marine Accident
## 3 1
## MARINE HAIL MARINE HIGH WIND
## 442 135
## MARINE MISHAP MARINE STRONG WIND
## 2 48
## MARINE THUNDERSTORM WIND MARINE TSTM WIND
## 5812 6175
## Metro Storm, May 26 Microburst
## 1 4
## MICROBURST MICROBURST WINDS
## 5 5
## Mild and Dry Pattern MILD PATTERN
## 1 1
## MILD/DRY PATTERN MINOR FLOOD
## 1 1
## Minor Flooding MINOR FLOODING
## 1 3
## MIXED PRECIP Mixed Precipitation
## 10 3
## MIXED PRECIPITATION MODERATE SNOW
## 34 1
## MODERATE SNOWFALL MONTHLY PRECIPITATION
## 101 36
## Monthly Rainfall MONTHLY RAINFALL
## 2 11
## Monthly Snowfall MONTHLY SNOWFALL
## 1 1
## MONTHLY TEMPERATURE Mountain Snows
## 4 1
## MUD SLIDE MUD SLIDES
## 7 1
## MUD SLIDES URBAN FLOODING MUD/ROCK SLIDE
## 1 1
## Mudslide MUDSLIDE
## 8 9
## MUDSLIDE/LANDSLIDE Mudslides
## 1 5
## MUDSLIDES NEAR RECORD SNOW
## 4 1
## No Severe Weather NON SEVERE HAIL
## 1 7
## NON TSTM WIND NON-SEVERE WIND DAMAGE
## 2 1
## NON-TSTM WIND NONE
## 1 2
## NORMAL PRECIPITATION NORTHERN LIGHTS
## 3 1
## Other OTHER
## 4 48
## PATCHY DENSE FOG PATCHY ICE
## 3 1
## Prolong Cold PROLONG COLD
## 5 17
## PROLONG COLD/SNOW PROLONG WARMTH
## 1 4
## PROLONGED RAIN RAIN
## 4 16
## RAIN (HEAVY) RAIN AND WIND
## 1 1
## Rain Damage RAIN/SNOW
## 1 5
## RAIN/WIND RAINSTORM
## 1 1
## RAPIDLY RISING WATER RECORD COLD
## 1 1
## Record Cold RECORD COLD
## 3 64
## RECORD COLD AND HIGH WIND RECORD COLD/FROST
## 1 2
## RECORD COOL Record dry month
## 5 1
## RECORD DRYNESS Record Heat
## 2 1
## RECORD HEAT RECORD HEAT WAVE
## 81 1
## Record High RECORD HIGH
## 2 5
## RECORD HIGH TEMPERATURE RECORD HIGH TEMPERATURES
## 3 1
## RECORD LOW RECORD LOW RAINFALL
## 4 2
## Record May Snow RECORD PRECIPITATION
## 1 1
## RECORD RAINFALL RECORD SNOW
## 14 8
## RECORD SNOW/COLD RECORD SNOWFALL
## 1 6
## Record temperature RECORD TEMPERATURE
## 11 5
## Record Temperatures RECORD TEMPERATURES
## 2 3
## RECORD WARM RECORD WARM TEMPS.
## 1 1
## Record Warmth RECORD WARMTH
## 8 146
## Record Winter Snow RECORD/EXCESSIVE HEAT
## 3 3
## RECORD/EXCESSIVE RAINFALL RED FLAG CRITERIA
## 1 2
## RED FLAG FIRE WX REMNANTS OF FLOYD
## 2 2
## RIP CURRENT RIP CURRENTS
## 470 304
## RIP CURRENTS HEAVY SURF RIP CURRENTS/HEAVY SURF
## 1 2
## RIVER AND STREAM FLOOD RIVER FLOOD
## 2 173
## River Flooding RIVER FLOODING
## 5 24
## ROCK SLIDE ROGUE WAVE
## 2 1
## ROTATING WALL CLOUD ROUGH SEAS
## 5 3
## ROUGH SURF RURAL FLOOD
## 4 2
## Saharan Dust SAHARAN DUST
## 2 2
## Seasonal Snowfall SEICHE
## 1 21
## SEVERE COLD SEVERE THUNDERSTORM
## 1 13
## SEVERE THUNDERSTORM WINDS SEVERE THUNDERSTORMS
## 5 23
## SEVERE TURBULENCE SLEET
## 1 59
## SLEET & FREEZING RAIN SLEET STORM
## 1 12
## SLEET/FREEZING RAIN SLEET/ICE STORM
## 2 1
## SLEET/RAIN/SNOW SLEET/SNOW
## 1 2
## small hail Small Hail
## 5 1
## SMALL HAIL SMALL STREAM
## 47 1
## SMALL STREAM AND SMALL STREAM AND URBAN FLOOD
## 1 2
## SMALL STREAM AND URBAN FLOODIN SMALL STREAM FLOOD
## 1 7
## SMALL STREAM FLOODING SMALL STREAM URBAN FLOOD
## 4 1
## SMALL STREAM/URBAN FLOOD Sml Stream Fld
## 5 2
## SMOKE Snow
## 11 30
## SNOW Snow Accumulation
## 587 1
## SNOW ACCUMULATION SNOW ADVISORY
## 1 1
## SNOW AND COLD SNOW AND HEAVY SNOW
## 2 2
## Snow and Ice SNOW AND ICE
## 1 33
## SNOW AND ICE STORM Snow and sleet
## 1 1
## SNOW AND SLEET SNOW AND WIND
## 4 1
## SNOW DROUGHT SNOW FREEZING RAIN
## 7 11
## SNOW SHOWERS SNOW SLEET
## 6 1
## SNOW SQUALL Snow squalls
## 19 1
## Snow Squalls SNOW SQUALLS
## 4 17
## SNOW- HIGH WIND- WIND CHILL SNOW/ BITTER COLD
## 1 1
## SNOW/ ICE SNOW/BLOWING SNOW
## 1 7
## SNOW/COLD SNOW/FREEZING RAIN
## 2 6
## SNOW/HEAVY SNOW SNOW/HIGH WINDS
## 1 2
## SNOW/ICE SNOW/ICE STORM
## 7 17
## SNOW/RAIN SNOW/RAIN/SLEET
## 1 1
## SNOW/SLEET SNOW/SLEET/FREEZING RAIN
## 10 6
## SNOW/SLEET/RAIN SNOW\\COLD
## 1 1
## SNOWFALL RECORD SNOWMELT FLOODING
## 1 5
## SNOWSTORM SOUTHEAST
## 1 1
## STORM FORCE WINDS STORM SURGE
## 1 261
## STORM SURGE/TIDE STREAM FLOODING
## 148 1
## STREET FLOOD STREET FLOODING
## 3 3
## Strong Wind STRONG WIND
## 3 3566
## STRONG WIND GUST Strong winds
## 2 1
## Strong Winds STRONG WINDS
## 7 196
## Summary August 10 Summary August 11
## 2 2
## Summary August 17 Summary August 2-3
## 1 1
## Summary August 21 Summary August 28
## 1 1
## Summary August 4 Summary August 7
## 1 1
## Summary August 9 Summary Jan 17
## 1 1
## Summary July 23-24 Summary June 18-19
## 1 1
## Summary June 5-6 Summary June 6
## 1 1
## Summary of April 12 Summary of April 13
## 2 1
## Summary of April 21 Summary of April 27
## 2 1
## Summary of April 3rd Summary of August 1
## 1 1
## Summary of July 11 Summary of July 2
## 1 1
## Summary of July 22 Summary of July 26
## 1 1
## Summary of July 29 Summary of July 3
## 1 1
## Summary of June 10 Summary of June 11
## 1 1
## Summary of June 12 Summary of June 13
## 1 2
## Summary of June 15 Summary of June 16
## 1 1
## Summary of June 18 Summary of June 23
## 1 1
## Summary of June 24 Summary of June 3
## 1 2
## Summary of June 30 Summary of June 4
## 1 1
## Summary of June 6 Summary of March 14
## 1 1
## Summary of March 23 Summary of March 24
## 2 1
## SUMMARY OF MARCH 24-25 SUMMARY OF MARCH 27
## 1 1
## SUMMARY OF MARCH 29 Summary of May 10
## 1 1
## Summary of May 13 Summary of May 14
## 1 1
## Summary of May 22 Summary of May 22 am
## 1 1
## Summary of May 22 pm Summary of May 26 am
## 1 1
## Summary of May 26 pm Summary of May 31 am
## 1 1
## Summary of May 31 pm Summary of May 9-10
## 1 1
## Summary Sept. 25-26 Summary September 20
## 1 1
## Summary September 23 Summary September 3
## 2 1
## Summary September 4 Summary: Nov. 16
## 1 2
## Summary: Nov. 6-7 Summary: Oct. 20-21
## 1 1
## Summary: October 31 Summary: Sept. 18
## 1 1
## Temperature record THUDERSTORM WINDS
## 43 2
## THUNDEERSTORM WINDS THUNDERESTORM WINDS
## 2 1
## THUNDERSNOW Thundersnow shower
## 1 1
## THUNDERSTORM THUNDERSTORM WINDS
## 45 7
## THUNDERSTORM DAMAGE THUNDERSTORM DAMAGE TO
## 2 1
## THUNDERSTORM HAIL THUNDERSTORM W INDS
## 1 1
## Thunderstorm Wind THUNDERSTORM WIND
## 1 82563
## THUNDERSTORM WIND (G40) THUNDERSTORM WIND 50
## 1 2
## THUNDERSTORM WIND 52 THUNDERSTORM WIND 56
## 1 1
## THUNDERSTORM WIND 59 THUNDERSTORM WIND 59 MPH
## 1 1
## THUNDERSTORM WIND 59 MPH. THUNDERSTORM WIND 60 MPH
## 1 4
## THUNDERSTORM WIND 65 MPH THUNDERSTORM WIND 65MPH
## 1 1
## THUNDERSTORM WIND 69 THUNDERSTORM WIND 98 MPH
## 1 1
## THUNDERSTORM WIND G50 THUNDERSTORM WIND G51
## 4 1
## THUNDERSTORM WIND G52 THUNDERSTORM WIND G55
## 2 1
## THUNDERSTORM WIND G60 THUNDERSTORM WIND G61
## 2 1
## THUNDERSTORM WIND TREES THUNDERSTORM WIND.
## 1 1
## THUNDERSTORM WIND/ TREE THUNDERSTORM WIND/ TREES
## 1 4
## THUNDERSTORM WIND/AWNING THUNDERSTORM WIND/HAIL
## 1 1
## THUNDERSTORM WIND/LIGHTNING THUNDERSTORM WINDS
## 1 20843
## THUNDERSTORM WINDS LE CEN THUNDERSTORM WINDS 13
## 1 1
## THUNDERSTORM WINDS 2 THUNDERSTORM WINDS 50
## 1 1
## THUNDERSTORM WINDS 52 THUNDERSTORM WINDS 53
## 1 1
## THUNDERSTORM WINDS 60 THUNDERSTORM WINDS 61
## 1 1
## THUNDERSTORM WINDS 62 THUNDERSTORM WINDS 63 MPH
## 1 1
## THUNDERSTORM WINDS AND THUNDERSTORM WINDS FUNNEL CLOU
## 2 2
## THUNDERSTORM WINDS G THUNDERSTORM WINDS G60
## 2 1
## THUNDERSTORM WINDS HAIL THUNDERSTORM WINDS HEAVY RAIN
## 61 1
## THUNDERSTORM WINDS LIGHTNING THUNDERSTORM WINDS SMALL STREA
## 7 1
## THUNDERSTORM WINDS URBAN FLOOD THUNDERSTORM WINDS.
## 1 3
## THUNDERSTORM WINDS/ FLOOD THUNDERSTORM WINDS/ HAIL
## 2 1
## THUNDERSTORM WINDS/FLASH FLOOD THUNDERSTORM WINDS/FLOODING
## 1 1
## THUNDERSTORM WINDS/FUNNEL CLOU THUNDERSTORM WINDS/HAIL
## 1 24
## THUNDERSTORM WINDS/HEAVY RAIN THUNDERSTORM WINDS53
## 1 1
## THUNDERSTORM WINDSHAIL THUNDERSTORM WINDSS
## 1 51
## THUNDERSTORM WINS THUNDERSTORMS
## 1 4
## THUNDERSTORMS WIND THUNDERSTORMS WINDS
## 6 14
## THUNDERSTORMW THUNDERSTORMW 50
## 1 1
## THUNDERSTORMW WINDS THUNDERSTORMWINDS
## 3 1
## THUNDERSTROM WIND THUNDERSTROM WINDS
## 1 2
## THUNDERTORM WINDS THUNDERTSORM WIND
## 3 1
## THUNDESTORM WINDS THUNERSTORM WINDS
## 2 1
## TIDAL FLOOD Tidal Flooding
## 1 5
## TIDAL FLOODING TORNADO
## 20 60652
## TORNADO DEBRIS TORNADO F0
## 1 19
## TORNADO F1 TORNADO F2
## 4 3
## TORNADO F3 TORNADO/WATERSPOUT
## 2 1
## TORNADOES TORNADOES, TSTM WIND, HAIL
## 2 1
## TORNADOS TORNDAO
## 1 1
## TORRENTIAL RAIN Torrential Rainfall
## 1 1
## TROPICAL DEPRESSION TROPICAL STORM
## 60 690
## TROPICAL STORM ALBERTO TROPICAL STORM DEAN
## 1 2
## TROPICAL STORM GORDON TROPICAL STORM JERRY
## 1 3
## TSTM TSTM HEAVY RAIN
## 1 3
## Tstm Wind TSTM WIND
## 2 219940
## TSTM WIND (G45) TSTM WIND (41)
## 1 1
## TSTM WIND (G35) TSTM WIND (G40)
## 1 10
## TSTM WIND (G45) TSTM WIND 40
## 39 1
## TSTM WIND 45 TSTM WIND 50
## 1 1
## TSTM WIND 51 TSTM WIND 52
## 2 5
## TSTM WIND 55 TSTM WIND 65)
## 3 1
## TSTM WIND AND LIGHTNING TSTM WIND DAMAGE
## 1 1
## TSTM WIND G45 TSTM WIND G58
## 1 1
## TSTM WIND/HAIL TSTM WINDS
## 1028 6
## TSTM WND TSTMW
## 1 1
## TSUNAMI TUNDERSTORM WIND
## 20 1
## TYPHOON Unseasonable Cold
## 11 1
## UNSEASONABLY COLD UNSEASONABLY COOL
## 23 12
## UNSEASONABLY COOL & WET UNSEASONABLY DRY
## 2 56
## UNSEASONABLY HOT UNSEASONABLY WARM
## 10 126
## UNSEASONABLY WARM & WET UNSEASONABLY WARM AND DRY
## 1 13
## UNSEASONABLY WARM YEAR UNSEASONABLY WARM/WET
## 2 2
## UNSEASONABLY WET UNSEASONAL LOW TEMP
## 19 2
## UNSEASONAL RAIN UNUSUAL WARMTH
## 2 10
## UNUSUAL/RECORD WARMTH UNUSUALLY COLD
## 2 8
## UNUSUALLY LATE SNOW UNUSUALLY WARM
## 1 4
## URBAN AND SMALL URBAN AND SMALL STREAM
## 2 3
## URBAN AND SMALL STREAM FLOOD URBAN AND SMALL STREAM FLOODIN
## 3 6
## Urban flood Urban Flood
## 1 1
## URBAN FLOOD URBAN FLOOD LANDSLIDE
## 249 1
## Urban Flooding URBAN FLOODING
## 1 98
## URBAN FLOODS URBAN SMALL
## 3 1
## URBAN SMALL STREAM FLOOD URBAN/SMALL
## 2 2
## URBAN/SMALL FLOODING URBAN/SMALL STREAM
## 1 8
## URBAN/SMALL STREAM FLOOD URBAN/SMALL STREAM FLOOD
## 2 30
## URBAN/SMALL STREAM FLOODING URBAN/SMALL STRM FLDG
## 4 1
## URBAN/SML STREAM FLD URBAN/SML STREAM FLDG
## 3392 1
## URBAN/STREET FLOODING VERY DRY
## 3 2
## VERY WARM VOG
## 1 1
## Volcanic Ash VOLCANIC ASH
## 1 22
## Volcanic Ash Plume VOLCANIC ASHFALL
## 1 3
## VOLCANIC ERUPTION WAKE LOW WIND
## 2 2
## WALL CLOUD WALL CLOUD/FUNNEL CLOUD
## 5 1
## WARM DRY CONDITIONS WARM WEATHER
## 1 1
## WATER SPOUT WATERSPOUT
## 1 3796
## WATERSPOUT FUNNEL CLOUD WATERSPOUT TORNADO
## 1 1
## WATERSPOUT- WATERSPOUT-TORNADO
## 10 2
## WATERSPOUT/ WATERSPOUT/ TORNADO
## 1 2
## WATERSPOUT/TORNADO WATERSPOUTS
## 8 37
## WAYTERSPOUT wet micoburst
## 1 1
## WET MICROBURST Wet Month
## 6 4
## WET SNOW WET WEATHER
## 1 1
## Wet Year Whirlwind
## 4 2
## WHIRLWIND WILD FIRES
## 1 4
## WILD/FOREST FIRE WILD/FOREST FIRES
## 1457 1
## WILDFIRE WILDFIRES
## 2761 8
## Wind WIND
## 6 340
## WIND ADVISORY WIND AND WAVE
## 12 1
## WIND CHILL WIND CHILL/HIGH WIND
## 18 1
## Wind Damage WIND DAMAGE
## 4 27
## WIND GUSTS WIND STORM
## 3 1
## WIND/HAIL WINDS
## 1 36
## WINTER MIX WINTER STORM
## 3 11433
## WINTER STORM HIGH WINDS WINTER STORM/HIGH WIND
## 1 1
## WINTER STORM/HIGH WINDS WINTER STORMS
## 1 3
## Winter Weather WINTER WEATHER
## 19 7026
## WINTER WEATHER MIX WINTER WEATHER/MIX
## 6 1104
## WINTERY MIX Wintry mix
## 2 3
## Wintry Mix WINTRY MIX
## 1 90
## WND
## 1
eventTable<-data.frame(table(mydata$EVTYPE))
sum(eventTable$Freq)
## [1] 902297
relFreq<-eventTable$Freq/sum(eventTable$Freq)
eventRfTable<-cbind(eventTable,relFreq)
eventRfTableSorted<-eventRfTable[order(eventRfTable$Freq,decreasing=TRUE),]
head(eventRfTableSorted,25)
## Var1 Freq relFreq
## 244 HAIL 288661 0.319917943
## 856 TSTM WIND 219940 0.243755659
## 760 THUNDERSTORM WIND 82563 0.091503130
## 834 TORNADO 60652 0.067219552
## 153 FLASH FLOOD 54277 0.060154251
## 170 FLOOD 25326 0.028068363
## 786 THUNDERSTORM WINDS 20843 0.023099933
## 359 HIGH WIND 20212 0.022400606
## 464 LIGHTNING 15754 0.017459883
## 310 HEAVY SNOW 15708 0.017408902
## 290 HEAVY RAIN 11723 0.012992396
## 972 WINTER STORM 11433 0.012670994
## 978 WINTER WEATHER 7026 0.007786793
## 216 FUNNEL CLOUD 6839 0.007579544
## 490 MARINE TSTM WIND 6175 0.006843645
## 489 MARINE THUNDERSTORM WIND 5812 0.006441338
## 936 WATERSPOUT 3796 0.004207040
## 676 STRONG WIND 3566 0.003952135
## 919 URBAN/SML STREAM FLD 3392 0.003759294
## 957 WILDFIRE 2761 0.003059968
## 30 BLIZZARD 2719 0.003013420
## 95 DROUGHT 2488 0.002757407
## 427 ICE STORM 2006 0.002223215
## 130 EXCESSIVE HEAT 1678 0.001859698
## 376 HIGH WINDS 1533 0.001698997
highRelFreq<-eventRfTable[relFreq>.01,]
cumFreq<-sum(highRelFreq$relFreq)
cumFreq
## [1] 0.9166516
There are a number of different codings used for similar types - can these be reduced to fewer codes? We see that the top 12 most frequent types account for over 90% of all the events, so we should recode events into types based on those 12, with all others in an “other” category. Since there is some overlap, this results in a reduced set of event categories.
n<-nrow(mydata)
EVTYPE2=rep("OTHER",n)
mydata2<-cbind(mydata,EVTYPE2)
mydata2$EVTYPE2<-ifelse(grepl("HAIL",EVTYPE),"HAIL",
ifelse(grepl("WIND",EVTYPE),"WIND",
ifelse(grepl("TORNADO",EVTYPE),"TORNADO",
ifelse(grepl("FLOOD",EVTYPE),"FLOOD",
ifelse(grepl("LIGHTNING",EVTYPE),"LIGHTNING",
ifelse(grepl("SNOW",EVTYPE),"SNOW STORM",
ifelse(grepl("RAIN",EVTYPE),"RAIN",
ifelse(grepl("WINTER",EVTYPE),"WINTER",
ifelse(grepl("FUNNEL",EVTYPE),"TORNADO",
ifelse(grepl("WATERSPOUT",EVTYPE),"TORNADO",
ifelse(grepl("WILDFIRE",EVTYPE),"WILDFIRE",
ifelse(grepl("BLIZZARD",EVTYPE),"SNOW STORM",
ifelse(grepl("DROUGHT",EVTYPE),"DROUGHT",
ifelse(grepl("ICE",EVTYPE),"ICE",
ifelse(grepl("HEAT",EVTYPE),"HEAT",
"OTHER")))))))))))))))
Exploratory Analysis - Plots of damage figures by event category for property damage, crop damage, and damage to people (fatalities + injuries).
mydata2$evntFact<-as.factor(mydata2$EVTYPE2)
library(ggplot2)
g <- ggplot(mydata2, aes(x=mydata2$evntFact, y=PROPDMG)) +
geom_boxplot()+coord_flip()
g<-g + labs(y="Property Damage Amount",x="Event Category")
g<-g + ggtitle("Property Damage Chart")
g
h <- ggplot(mydata2, aes(x=mydata2$evntFact, y=CROPDMG)) +
geom_boxplot()+coord_flip()
h<-h + labs(y="Crop Damage Amount",x="Event Category")
h<-h + ggtitle("Crop Damage Chart")
h
mydata2$pplDam<-FATALITIES+INJURIES
p <- ggplot(mydata2, aes(x=mydata2$evntFact, y=pplDam)) +
geom_boxplot()+coord_flip()
p<-p + labs(y="Human Damage Amount",x="Event Category")
p<-p + ggtitle("Human Damage (Fatalities + Injuries) Chart")
p
Clearly different types of events have different impacts. For example, tornados seem to cause high levels of property damage compared to other events. The main analysis will test for significant differences in impact for different types of events. The category “OTHER” is used as the base category and all other events are tested for their effects against that one. The analysis is a series of regressions with the damage variable as the dependent variable and the storm event type as the regressor (factor).
evntNotOth<-relevel(mydata2$evntFact,"OTHER")
summary(lm(FATALITIES~evntNotOth,data=mydata2))
##
## Call:
## lm(formula = FATALITIES ~ evntNotOth, data = mydata2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.19 -0.01 0.00 0.00 581.81
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.107655 0.005982 17.997 < 2e-16 ***
## evntNotOthDROUGHT -0.105260 0.016362 -6.433 1.25e-10 ***
## evntNotOthFLOOD -0.089228 0.006543 -13.637 < 2e-16 ***
## evntNotOthHAIL -0.107500 0.006147 -17.489 < 2e-16 ***
## evntNotOthHEAT 1.084125 0.016027 67.643 < 2e-16 ***
## evntNotOthICE -0.061355 0.017695 -3.467 0.000526 ***
## evntNotOthLIGHTNING -0.055828 0.008523 -6.550 5.74e-11 ***
## evntNotOthRAIN -0.098826 0.009150 -10.801 < 2e-16 ***
## evntNotOthSNOW STORM -0.094707 0.008024 -11.803 < 2e-16 ***
## evntNotOthTORNADO -0.028818 0.006626 -4.349 1.37e-05 ***
## evntNotOthWILDFIRE -0.080570 0.015672 -5.141 2.73e-07 ***
## evntNotOthWIND -0.103762 0.006114 -16.971 < 2e-16 ***
## evntNotOthWINTER -0.093507 0.008091 -11.557 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7622 on 902284 degrees of freedom
## Multiple R-squared: 0.007952, Adjusted R-squared: 0.007938
## F-statistic: 602.7 on 12 and 902284 DF, p-value: < 2.2e-16
Heat causes the greatest average increase in fatalities over the general category of “OTHER”, adding an average 1.1 fatalities. The model is significant (F=602.7 with 12, 902284 d.f., p<.001) and the coefficient for heat (+1.084125) is also significant (t=67.643, p<.001).
summary(lm(INJURIES~evntNotOth,data=mydata2))
##
## Call:
## lm(formula = INJURIES ~ evntNotOth, data = mydata2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.48 -0.03 -0.03 -0.01 1698.72
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.37378 0.04252 8.791 < 2e-16 ***
## evntNotOthDROUGHT -0.36619 0.11631 -3.149 0.00164 **
## evntNotOthFLOOD -0.26968 0.04651 -5.798 6.70e-09 ***
## evntNotOthHAIL -0.36872 0.04369 -8.439 < 2e-16 ***
## evntNotOthHEAT 3.10377 0.11392 27.244 < 2e-16 ***
## evntNotOthICE 0.65343 0.12578 5.195 2.05e-07 ***
## evntNotOthLIGHTNING -0.04188 0.06058 -0.691 0.48938
## evntNotOthRAIN -0.34910 0.06504 -5.367 7.99e-08 ***
## evntNotOthSNOW STORM -0.27910 0.05704 -4.893 9.92e-07 ***
## evntNotOthTORNADO 0.90461 0.04710 19.206 < 2e-16 ***
## evntNotOthWILDFIRE -0.04478 0.11140 -0.402 0.68772
## evntNotOthWIND -0.34244 0.04346 -7.880 3.29e-15 ***
## evntNotOthWINTER -0.27795 0.05751 -4.833 1.34e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.418 on 902284 degrees of freedom
## Multiple R-squared: 0.005068, Adjusted R-squared: 0.005055
## F-statistic: 383 on 12 and 902284 DF, p-value: < 2.2e-16
Heat also causes the greatest average increase in injuries over the general category of “OTHER”, adding an average 3.1 injuries. The model is significant (F=383 with 12, 902284 d.f., p<.001) and the coefficient for heat (+3.10377) is also significant (t=27.244, p<.001).
summary(lm(PROPDMG~evntNotOth,data=mydata2))
##
## Call:
## lm(formula = PROPDMG ~ evntNotOth, data = mydata2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -45.1 -8.6 -7.6 -2.4 4991.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.2656 0.4557 33.50 <2e-16 ***
## evntNotOthDROUGHT -13.5494 1.2465 -10.87 <2e-16 ***
## evntNotOthFLOOD 14.1851 0.4985 28.46 <2e-16 ***
## evntNotOthHAIL -12.8574 0.4683 -27.46 <2e-16 ***
## evntNotOthHEAT -14.1115 1.2209 -11.56 <2e-16 ***
## evntNotOthICE 20.1914 1.3480 14.98 <2e-16 ***
## evntNotOthLIGHTNING 23.0131 0.6493 35.44 <2e-16 ***
## evntNotOthRAIN -10.5690 0.6971 -15.16 <2e-16 ***
## evntNotOthSNOW STORM -6.5665 0.6113 -10.74 <2e-16 ***
## evntNotOthTORNADO 29.8294 0.5048 59.09 <2e-16 ***
## evntNotOthWILDFIRE 15.4528 1.1939 12.94 <2e-16 ***
## evntNotOthWIND -6.6781 0.4658 -14.34 <2e-16 ***
## evntNotOthWINTER -7.5718 0.6163 -12.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 58.07 on 902284 degrees of freedom
## Multiple R-squared: 0.04682, Adjusted R-squared: 0.04681
## F-statistic: 3694 on 12 and 902284 DF, p-value: < 2.2e-16
Tornados cause the greatest average increase in property damage over the general category of “OTHER”, adding an average 29.8K in costs. The model is significant (F=3694 with 12, 902284 d.f., p<.001) and the coefficient for tornado (+29.8294) is also significant (t=59.09, p<.001).
summary(lm(CROPDMG~evntNotOth,data=mydata2))
##
## Call:
## lm(formula = CROPDMG ~ evntNotOth, data = mydata2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.55 -2.02 -1.03 -0.60 982.14
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8615 0.1737 16.473 < 2e-16 ***
## evntNotOthDROUGHT 10.6932 0.4751 22.505 < 2e-16 ***
## evntNotOthFLOOD 1.5324 0.1900 8.065 7.34e-16 ***
## evntNotOthHAIL -0.8437 0.1785 -4.726 2.29e-06 ***
## evntNotOthHEAT -2.3221 0.4654 -4.989 6.06e-07 ***
## evntNotOthICE -2.0549 0.5138 -3.999 6.36e-05 ***
## evntNotOthLIGHTNING -2.6343 0.2475 -10.644 < 2e-16 ***
## evntNotOthRAIN -1.8345 0.2657 -6.904 5.06e-12 ***
## evntNotOthSNOW STORM -2.7459 0.2330 -11.784 < 2e-16 ***
## evntNotOthTORNADO -1.4630 0.1924 -7.603 2.89e-14 ***
## evntNotOthWILDFIRE -1.1048 0.4551 -2.428 0.0152 *
## evntNotOthWIND -2.2581 0.1775 -12.719 < 2e-16 ***
## evntNotOthWINTER -2.7341 0.2349 -11.637 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.13 on 902284 degrees of freedom
## Multiple R-squared: 0.003526, Adjusted R-squared: 0.003513
## F-statistic: 266.1 on 12 and 902284 DF, p-value: < 2.2e-16
Interestingly, drought has the greatest impact on crop damage, adding an average 10.69K to costs. Also interestingly, flood also has a positive coefficient. So too little water and too much water are both concerns. The model is significant (F=266.1 with 12, 902284 d.f., p<.001) and the coefficient for drought (+10.6932) is also significant (t=22.505, p<.001).