There are two samples of complexity norms, RC43 and RC44. They are identical except that in RC44 we don’t give examples in the instrucitons and there are no anchor trials (ball and motherboard). We did this with the motivation of getting more variability in our sample, but it doesn’t really look like we achieved this. Nevertheless, the complexity bias is much bigger in the second sample. Does it make sense to use this sample instead?
RC43 and RC44
files = dir("../experiments/RC43/production-results/")
d43 = data.frame()
for (i in 1:length(files)[1]) {
s <- as.data.frame(fromJSON(paste("../experiments/RC43/production-results/", files[i], sep = "")))
d43 = rbind(d43, s)
}
d43$exp = 43
# clean up names
names(d43) = unlist(strsplit(names(d43), "rs."))[unlist(strsplit(names(d43), "rs."))
!= "answe"]
d43 = d43 %>%
gather(variable, value, contains("_")) %>%
mutate(trial_num = unlist(lapply(strsplit(as.character(variable),
"_"),function(x) x[2])),
variable = unlist(lapply(strsplit(as.character(variable),
"_"),function(x) x[1]))) %>%
spread(variable, value) %>%
mutate(value = as.numeric(value)) %>%
filter(condition == "swadesh") %>%#Split datasets by study.
select(WorkerId, exp, trial_num, value, word) %>%
filter(word != "motherboard" & word != "ball")
files = dir("../experiments/RC44/production-results/")
d44 = data.frame()
for (i in 1:length(files)[1]) {
s <- as.data.frame(fromJSON(paste("../experiments/RC44/production-results/", files[i], sep = "")))
d44 = rbind(d44, s)
}
d44$exp = 44
# clean up names
names(d44) = unlist(strsplit(names(d44), "rs."))[unlist(strsplit(names(d44), "rs."))
!= "answe"]
d44 = d44 %>%
gather(variable, value, contains("_")) %>%
mutate(trial_num = unlist(lapply(strsplit(as.character(variable),
"_"),function(x) x[2])),
variable = unlist(lapply(strsplit(as.character(variable),
"_"),function(x) x[1]))) %>%
spread(variable, value) %>%
mutate(value = as.numeric(value)) %>%
select(WorkerId, exp, trial_num, value, word)
d = rbind(d43, d44) %>%
mutate(wordLength = nchar(word))
Distributions don’t look wildly different (in fact there’s less variability in the second sample.)
d %>%
ggplot(aes(x=value)) +
geom_density(fill = "red") +
facet_grid(~exp) +
geom_vline(aes(xintercept = mean(value))) +
xlim(1,7) +
theme_bw()
sw.means = d %>%
mutate(word = trimws(word)) %>%
group_by(word, exp) %>%
summarise(mean = mean(value)) %>%
mutate(wordLength.eng = nchar(word))
sw.means %>%
ungroup() %>%
group_by(exp) %>%
summarise(sd = sd(mean),
mean = mean(mean)) %>%
kable()
exp | sd | mean |
---|---|---|
43 | 0.5930842 | 2.877284 |
44 | 0.4361398 | 2.537750 |
The bias is much bigger in the second sample (RC44).
ggplot(sw.means, aes(y = wordLength.eng, x = mean )) +
geom_label(aes(label = word),position = "jitter") +
facet_grid(~exp) +
geom_smooth(method = "lm") +
ylab("word length (char)") +
xlab("Mean complexity rating") +
theme_bw()
sw.means %>%
group_by(exp) %>%
do(tidy(cor.test(.$wordLength.eng, .$mean))) %>%
select(exp, estimate, statistic, p.value) %>%
kable()
exp | estimate | statistic | p.value |
---|---|---|---|
43 | 0.3168701 | 2.059443 | 0.0463512 |
44 | 0.5122684 | 3.676922 | 0.0007269 |