load("titanic.raw.rdata")
##Associating Minig Rule
str(titanic.raw)
## 'data.frame': 2201 obs. of 4 variables:
## $ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
## $ Age : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 ...
## $ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
library(arules)
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
rules <- apriori(titanic.raw,parameter = list(minlen=2, supp=0.05, conf=0.8),
appearance = list(rhs=c("Survived=No", "Survived=Yes"),
default="lhs"),
control = list(verbose=F))
rules.sorted <- sort(rules, by="lift")
inspect(rules.sorted)
## lhs rhs support
## [1] {Class=1st,Sex=Female} => {Survived=Yes} 0.06406179
## [2] {Class=1st,Sex=Female,Age=Adult} => {Survived=Yes} 0.06360745
## [3] {Class=2nd,Sex=Male,Age=Adult} => {Survived=No} 0.06996820
## [4] {Class=2nd,Sex=Male} => {Survived=No} 0.06996820
## [5] {Class=3rd,Sex=Male,Age=Adult} => {Survived=No} 0.17582917
## [6] {Class=3rd,Sex=Male} => {Survived=No} 0.19173103
## confidence lift
## [1] 0.9724138 3.010243
## [2] 0.9722222 3.009650
## [3] 0.9166667 1.354083
## [4] 0.8603352 1.270871
## [5] 0.8376623 1.237379
## [6] 0.8274510 1.222295
##Pruning Redundant Rule
library(arulesViz)
## Loading required package: grid
## Warning: failed to assign NativeSymbolInfo for lhs since lhs is already
## defined in the 'lazyeval' namespace
## Warning: failed to assign NativeSymbolInfo for rhs since rhs is already
## defined in the 'lazyeval' namespace
plot(rules)

plot(rules, method="graph", control=list(type="items"))

##Vizualizing Association Rules
plot(rules, method="paracoord", control=list(reorder=TRUE))
