Checking the data

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

homedata<-read.csv("C:/Users/hekai.BEAN_PC/Desktop/Data.csv")
x0<-homedata[which(homedata$Level==0),2:21]
x1<-homedata[which(homedata$Level==1),2:21]
x2<-homedata[which(homedata$Level==2),2:21]
dev.new()
plot(x0)
dev.new()
plot(x1)
dev.new()
plot(x2)

A scrutiny

homedata[which(homedata$Level==2),1]<-0
x<-homedata[1:9]
plot(x)

n<-7
a<-list(dim(1))
for (i in 3:9) {
  for (j in 1:n-1) {
    a[[j+(i-3)*(15-i)/2+1]]<-lm(x[,i]~x[,i+j]+x[,1])
    j<j+1
    print(colnames(x[i]))
    print("~")
    print(colnames(x[i+j]))
    print(summary(a[[j+(i-3)*(15-i)/2+1]]))
  }
  n<-n-1
  i<-i+1
}
## [1] "TPLFA"
## [1] "~"
## [1] "TPLFA"
## Warning in summary.lm(a[[j + (i - 3) * (15 - i)/2 + 1]]): essentially
## perfect fit: summary may be unreliable
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -2.973e-15 -9.292e-16 -5.470e-16  1.856e-16  2.934e-14 
## 
## Coefficients:
##               Estimate Std. Error    t value Pr(>|t|)    
## (Intercept)  7.338e-15  1.508e-15  4.867e+00 9.33e-06 ***
## x[, i + j]   1.000e+00  8.366e-17  1.195e+16  < 2e-16 ***
## x[, 1]      -1.067e-15  1.066e-15 -1.001e+00    0.321    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.98e-15 on 57 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 7.384e+31 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "TPLFA"
## [1] "~"
## [1] "GPB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1478 -1.3910  0.0446  1.1165  5.1533 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3883     0.6908   3.457  0.00104 ** 
## x[, i + j]    3.3259     0.1462  22.746  < 2e-16 ***
## x[, 1]       -0.9133     0.5419  -1.685  0.09736 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.985 on 57 degrees of freedom
## Multiple R-squared:  0.904,  Adjusted R-squared:  0.9006 
## F-statistic: 268.4 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "TPLFA"
## [1] "~"
## [1] "GNB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0738 -1.5349 -0.9304  1.2759  7.0899 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.0738     0.8218   4.957 6.77e-06 ***
## x[, i + j]    1.9099     0.1112  17.179  < 2e-16 ***
## x[, 1]        0.1455     0.6798   0.214    0.831    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.535 on 57 degrees of freedom
## Multiple R-squared:  0.8434, Adjusted R-squared:  0.8379 
## F-statistic: 153.5 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "TPLFA"
## [1] "~"
## [1] "BPLFA"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5053 -1.3295 -0.3894  1.2411  5.8324 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.92856    0.64465   4.543    3e-05 ***
## x[, i + j]   1.26745    0.05273  24.036   <2e-16 ***
## x[, 1]      -0.40868    0.47931  -0.853    0.397    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.774 on 56 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9137, Adjusted R-squared:  0.9106 
## F-statistic: 296.5 on 2 and 56 DF,  p-value: < 2.2e-16
## 
## [1] "TPLFA"
## [1] "~"
## [1] "FPLFA"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4333 -1.5705 -0.4991  1.0656  9.6712 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.2294     0.8318   3.882 0.000271 ***
## x[, i + j]    3.4950     0.1955  17.878  < 2e-16 ***
## x[, 1]       -0.1672     0.6606  -0.253 0.801138    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.451 on 57 degrees of freedom
## Multiple R-squared:  0.8536, Adjusted R-squared:  0.8484 
## F-statistic: 166.1 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "TPLFA"
## [1] "~"
## [1] "ANE"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5515 -1.6347 -0.0212  0.9376  6.2410 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.7847     0.7641   3.644 0.000581 ***
## x[, i + j]    8.2941     0.4138  20.044  < 2e-16 ***
## x[, 1]       -0.7218     0.6044  -1.194 0.237382    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.221 on 57 degrees of freedom
## Multiple R-squared:  0.8798, Adjusted R-squared:  0.8756 
## F-statistic: 208.6 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "TPLFA"
## [1] "~"
## [1] "MOB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8055 -1.1447 -0.0707  0.9276  7.1804 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.8055     0.6905   6.959 3.72e-09 ***
## x[, i + j]   26.5282     1.3496  19.657  < 2e-16 ***
## x[, 1]        0.8313     0.6001   1.385    0.171    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.259 on 57 degrees of freedom
## Multiple R-squared:  0.8756, Adjusted R-squared:  0.8713 
## F-statistic: 200.7 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GPB"
## [1] "~"
## [1] "GPB"
## Warning in summary.lm(a[[j + (i - 3) * (15 - i)/2 + 1]]): essentially
## perfect fit: summary may be unreliable
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -5.499e-15 -3.990e-17  1.225e-16  1.904e-16  6.704e-16 
## 
## Coefficients:
##              Estimate Std. Error   t value Pr(>|t|)    
## (Intercept) 1.835e-15  2.616e-16 7.014e+00 3.02e-09 ***
## x[, i + j]  1.000e+00  5.537e-17 1.806e+16  < 2e-16 ***
## x[, 1]      2.490e-16  2.052e-16 1.214e+00     0.23    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.516e-16 on 57 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.75e+32 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GPB"
## [1] "~"
## [1] "GNB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2187 -0.5873 -0.0204  0.5594  3.0484 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.84204    0.28136   2.993  0.00408 ** 
## x[, i + j]   0.52138    0.03806  13.698  < 2e-16 ***
## x[, 1]       0.37801    0.23273   1.624  0.10984    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.868 on 57 degrees of freedom
## Multiple R-squared:  0.7829, Adjusted R-squared:  0.7752 
## F-statistic: 102.7 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GPB"
## [1] "~"
## [1] "BPLFA"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.96132 -0.43595  0.00921  0.35370  1.80760 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.34195    0.20509   1.667    0.101    
## x[, i + j]   0.36260    0.01678  21.615   <2e-16 ***
## x[, 1]       0.20501    0.15249   1.344    0.184    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5643 on 56 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.8992, Adjusted R-squared:  0.8956 
## F-statistic: 249.7 on 2 and 56 DF,  p-value: < 2.2e-16
## 
## [1] "GPB"
## [1] "~"
## [1] "FPLFA"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9505 -0.6184 -0.1129  0.4499  4.1725 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.91544    0.36155   2.532   0.0141 *  
## x[, i + j]   0.87207    0.08497  10.263 1.44e-14 ***
## x[, 1]       0.35058    0.28713   1.221   0.2271    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.066 on 57 degrees of freedom
## Multiple R-squared:  0.6728, Adjusted R-squared:  0.6613 
## F-statistic: 58.59 on 2 and 57 DF,  p-value: 1.493e-14
## 
## [1] "GPB"
## [1] "~"
## [1] "ANE"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4943 -0.5552 -0.1101  0.4157  3.1416 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.5317     0.2879   1.847    0.070 .  
## x[, i + j]    2.2384     0.1559  14.355   <2e-16 ***
## x[, 1]        0.1507     0.2278   0.661    0.511    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.837 on 57 degrees of freedom
## Multiple R-squared:  0.7981, Adjusted R-squared:  0.791 
## F-statistic: 112.6 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GPB"
## [1] "~"
## [1] "MOB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.80525 -0.55599 -0.06862  0.46392  2.98660 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.2219     0.2971   4.112 0.000127 ***
## x[, i + j]    6.8217     0.5807  11.746  < 2e-16 ***
## x[, 1]        0.5885     0.2582   2.279 0.026423 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9722 on 57 degrees of freedom
## Multiple R-squared:  0.7275, Adjusted R-squared:  0.718 
## F-statistic:  76.1 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GNB"
## [1] "~"
## [1] "GNB"
## Warning in summary.lm(a[[j + (i - 3) * (15 - i)/2 + 1]]): essentially
## perfect fit: summary may be unreliable
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.191e-15 -3.001e-16 -1.911e-16  3.440e-17  8.921e-15 
## 
## Coefficients:
##               Estimate Std. Error    t value Pr(>|t|)    
## (Intercept) -1.835e-15  3.964e-16 -4.629e+00 2.17e-05 ***
## x[, i + j]   1.000e+00  5.362e-17  1.865e+16  < 2e-16 ***
## x[, 1]      -3.128e-16  3.279e-16 -9.540e-01    0.344    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.223e-15 on 57 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.8e+32 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GNB"
## [1] "~"
## [1] "BPLFA"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8015 -0.3432  0.0265  0.4429  0.8874 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.38413    0.20598  -1.865   0.0674 .  
## x[, i + j]   0.63806    0.01685  37.870   <2e-16 ***
## x[, 1]      -0.18390    0.15315  -1.201   0.2349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5668 on 56 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9634, Adjusted R-squared:  0.9621 
## F-statistic:   737 on 2 and 56 DF,  p-value: < 2.2e-16
## 
## [1] "GNB"
## [1] "~"
## [1] "FPLFA"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6948 -0.9338  0.2303  0.8776  2.4292 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.34125    0.46725   0.730    0.468    
## x[, i + j]   1.61855    0.10981  14.739   <2e-16 ***
## x[, 1]      -0.01442    0.37108  -0.039    0.969    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.377 on 57 degrees of freedom
## Multiple R-squared:  0.7992, Adjusted R-squared:  0.7922 
## F-statistic: 113.5 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GNB"
## [1] "~"
## [1] "ANE"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6393 -1.0485  0.5281  1.2084  2.5141 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4981     0.5452   0.914    0.365    
## x[, i + j]    3.6165     0.2953  12.248   <2e-16 ***
## x[, 1]       -0.1894     0.4313  -0.439    0.662    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.585 on 57 degrees of freedom
## Multiple R-squared:  0.7341, Adjusted R-squared:  0.7247 
## F-statistic: 78.66 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "GNB"
## [1] "~"
## [1] "MOB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5111 -1.0153  0.4521  1.0574  3.1359 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.2858     0.4629   2.777   0.0074 ** 
## x[, i + j]   11.7850     0.9048  13.025   <2e-16 ***
## x[, 1]        0.4757     0.4023   1.183   0.2419    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.515 on 57 degrees of freedom
## Multiple R-squared:  0.7571, Adjusted R-squared:  0.7486 
## F-statistic: 88.83 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "BPLFA"
## [1] "~"
## [1] "BPLFA"
## Warning in summary.lm(a[[j + (i - 3) * (15 - i)/2 + 1]]): essentially
## perfect fit: summary may be unreliable
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -3.396e-14 -1.710e-16  7.410e-16  1.083e-15  4.334e-15 
## 
## Coefficients:
##              Estimate Std. Error   t value Pr(>|t|)    
## (Intercept) 9.250e-15  1.692e-15 5.467e+00  1.1e-06 ***
## x[, i + j]  1.000e+00  1.384e-16 7.225e+15  < 2e-16 ***
## x[, 1]      1.280e-15  1.258e-15 1.017e+00    0.313    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.656e-15 on 56 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 2.713e+31 on 2 and 56 DF,  p-value: < 2.2e-16
## 
## [1] "BPLFA"
## [1] "~"
## [1] "FPLFA"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2663 -1.2106 -0.0438  0.8916  6.4301 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.4166     0.7778   1.821   0.0739 .  
## x[, i + j]    2.4673     0.1802  13.689   <2e-16 ***
## x[, 1]        0.2920     0.5816   0.502   0.6176    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.156 on 56 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.7787, Adjusted R-squared:  0.7708 
## F-statistic: 98.51 on 2 and 56 DF,  p-value: < 2.2e-16
## 
## [1] "BPLFA"
## [1] "~"
## [1] "ANE"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.160 -1.616  0.163  1.557  4.079 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.20610    0.78388   1.539    0.130    
## x[, i + j]   5.78756    0.41856  13.827   <2e-16 ***
## x[, 1]      -0.06903    0.58247  -0.119    0.906    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.14 on 56 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.7821, Adjusted R-squared:  0.7743 
## F-statistic: 100.5 on 2 and 56 DF,  p-value: < 2.2e-16
## 
## [1] "BPLFA"
## [1] "~"
## [1] "MOB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5889 -1.8191  0.3509  1.4991  5.0891 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.7614     0.6902   4.001 0.000187 ***
## x[, i + j]   18.2733     1.3300  13.739  < 2e-16 ***
## x[, 1]        0.9847     0.5727   1.719 0.091077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.15 on 56 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.7799, Adjusted R-squared:  0.7721 
## F-statistic: 99.23 on 2 and 56 DF,  p-value: < 2.2e-16
## 
## [1] "FPLFA"
## [1] "~"
## [1] "FPLFA"
## Warning in summary.lm(a[[j + (i - 3) * (15 - i)/2 + 1]]): essentially
## perfect fit: summary may be unreliable
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -3.393e-16 -6.433e-17  7.090e-18  6.754e-17  5.812e-16 
## 
## Coefficients:
##               Estimate Std. Error    t value Pr(>|t|)    
## (Intercept)  4.586e-16  4.803e-17  9.549e+00 1.98e-13 ***
## x[, i + j]   1.000e+00  1.129e-17  8.859e+16  < 2e-16 ***
## x[, 1]      -4.327e-17  3.814e-17 -1.134e+00    0.261    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.416e-16 on 57 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 4.103e+33 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "FPLFA"
## [1] "~"
## [1] "ANE"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.86964 -0.53874 -0.01531  0.59876  2.35392 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.47185    0.29435   1.603    0.114    
## x[, i + j]   2.00227    0.15940  12.561   <2e-16 ***
## x[, 1]      -0.02352    0.23285  -0.101    0.920    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8556 on 57 degrees of freedom
## Multiple R-squared:  0.7462, Adjusted R-squared:  0.7373 
## F-statistic:  83.8 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "FPLFA"
## [1] "~"
## [1] "MOB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.35813 -0.38219  0.02365  0.36467  1.34232 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.7293     0.1908   3.823 0.000329 ***
## x[, i + j]    6.9414     0.3728  18.619  < 2e-16 ***
## x[, 1]        0.3216     0.1658   1.940 0.057287 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6241 on 57 degrees of freedom
## Multiple R-squared:  0.865,  Adjusted R-squared:  0.8602 
## F-statistic: 182.6 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "ANE"
## [1] "~"
## [1] "ANE"
## Warning in summary.lm(a[[j + (i - 3) * (15 - i)/2 + 1]]): essentially
## perfect fit: summary may be unreliable
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -3.170e-15 -1.050e-17  6.900e-17  9.340e-17  3.799e-16 
## 
## Coefficients:
##              Estimate Std. Error   t value Pr(>|t|)    
## (Intercept) 1.147e-15  1.484e-16 7.726e+00 1.96e-10 ***
## x[, i + j]  1.000e+00  8.037e-17 1.244e+16  < 2e-16 ***
## x[, 1]      1.030e-16  1.174e-16 8.770e-01    0.384    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.314e-16 on 57 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 8.254e+31 on 2 and 57 DF,  p-value: < 2.2e-16
## 
## [1] "ANE"
## [1] "~"
## [1] "MOB"
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.82403 -0.16600  0.02694  0.12395  1.11996 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4664     0.1194   3.907 0.000251 ***
## x[, i + j]    2.6791     0.2333  11.483  < 2e-16 ***
## x[, 1]        0.2160     0.1037   2.082 0.041807 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3906 on 57 degrees of freedom
## Multiple R-squared:  0.717,  Adjusted R-squared:  0.707 
## F-statistic:  72.2 on 2 and 57 DF,  p-value: 2.383e-16
## 
## [1] "MOB"
## [1] "~"
## [1] "MOB"
## Warning in summary.lm(a[[j + (i - 3) * (15 - i)/2 + 1]]): essentially
## perfect fit: summary may be unreliable
## 
## Call:
## lm(formula = x[, i] ~ x[, i + j] + x[, 1])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -4.043e-17 -1.176e-17 -4.757e-18  4.319e-18  2.841e-16 
## 
## Coefficients:
##               Estimate Std. Error    t value Pr(>|t|)    
## (Intercept)  1.147e-16  1.230e-17  9.319e+00 4.68e-13 ***
## x[, i + j]   1.000e+00  2.405e-17  4.158e+16  < 2e-16 ***
## x[, 1]      -1.509e-17  1.069e-17 -1.412e+00    0.164    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.026e-17 on 57 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 8.782e+32 on 2 and 57 DF,  p-value: < 2.2e-16