QUESTION 1.1:
A1 <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow = 4, byrow = T)
A1
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
dim(A1)
## [1] 4 4
Solution: From the above matrix, its known that its dimension is 4x4(a square matrix), therefore it rank is 4
QUESTION 1.2:
Solution:
Since the rank is the number of all non-zero row, the rank has to be no greater than the smaller of the row or column dimension is n.
QUESTION 1.3
B <- matrix(c(1,2,1,3,6,3,2,4,2), nrow = 3, byrow = T)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
dim(B)
## [1] 3 3
R1 <- B[1, ]
R2 <- B[2, ]
R3 <- B[3, ]
a <- R1-(1/3)%*%R2
b <- R3-(2/3)%*%R2
Mat <- matrix(c(a,b,R2), nrow = 3, byrow = T)
Mat
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 3 6 3
Solution:
Since the rank is the number of all non-zero row, therefore the rank is 1.
QUESTION 2:Compute the eigenvalues and eigenvectors of the matrix A.
A <- matrix(c(1,2,3,0,4,5,0,0,6), nrow = 3, byrow = T)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
I <- matrix(c("x" ,0,0,0,"x" ,0,0,0,"x" ), nrow = 3, byrow = T)
I
## [,1] [,2] [,3]
## [1,] "x" "0" "0"
## [2,] "0" "x" "0"
## [3,] "0" "0" "x"
\(det\left( \left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{matrix} \right] \quad -\quad \left[ \begin{matrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{matrix} \right] \right) \quad =\quad det\left( \left[ \begin{matrix} 1-\lambda & 2 & 3 \\ 0 & 4-\lambda & 0 \\ 0 & 0 & 6-\lambda \end{matrix} \right] \right)\)
\(=\quad (1-\lambda )\left[ (4-\lambda )(6-\lambda )\quad -(0*0) \right] \quad -\quad (2)\left[ (0)(6-\lambda )-(0*0 \right] \quad +\quad (3)\left[ (0*0)-(0*4-\lambda ) \right]\)
\(=\quad (1-\lambda )\left[ (4-\lambda )(6-\lambda ) \right] \quad =\quad 0\)
Their respective Eigenvalues are:
For \(\lambda_1\) = 1, its eigenvectors are \(\left[\begin{matrix} 1.0000 \\ 0.0000 \\ 0.0000 \end{matrix} \right]\)
For \(\lambda_2\) = 4, its eigenvestors are \(\left[\begin{matrix} 1.6000 \\ 2.5000 \\ 1.0000 \end{matrix} \right]\)
For \(\lambda_3\) = 6, its eigenvectors are \(\left[\begin{matrix} 0.6667 \\ 1.0000 \\ 0.0000 \end{matrix} \right]\)
OR
eigen(A, only.values = FALSE, EISPACK = TRUE)
## $values
## [1] 6 4 1
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0