Library packages

pkgs <- c("nlme", "dplyr", "magrittr", "tidyr", "ggplot2", "lmtest","lme4","reshape2","scales","extracat","HLMdiag","car","mets")
lapply(pkgs, library, character.only = TRUE)

Question 1

library("HLMdiag")
dta1 <- radon
str(dta1)
## 'data.frame':    919 obs. of  5 variables:
##  $ log.radon  : num  0.788 0.788 1.065 0 1.131 ...
##  $ basement   : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ uranium    : num  -0.689 -0.689 -0.689 -0.689 -0.847 ...
##  $ county     : int  1 1 1 1 2 2 2 2 2 2 ...
##  $ county.name: Factor w/ 85 levels "AITKIN","ANOKA",..: 1 1 1 1 2 2 2 2 2 2 ...
dta1$county<- as.factor(dta1$county)
summary(q1 <- lmer(log.radon~ 1+(1|county), data = dta1))
## Linear mixed model fit by REML ['lmerMod']
## Formula: log.radon ~ 1 + (1 | county)
##    Data: dta1
## 
## REML criterion at convergence: 2259.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4661 -0.5734  0.0441  0.6432  3.3516 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  county   (Intercept) 0.09581  0.3095  
##  Residual             0.63662  0.7979  
## Number of obs: 919, groups:  county, 85
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.31258    0.04891   26.84
confint(q1)
##                 2.5 %    97.5 %
## .sig01      0.2201867 0.4071878
## .sigma      0.7612997 0.8374554
## (Intercept) 1.2166850 1.4101343

Question 2

dta2 <- ergoStool
str(dta2)
## Classes 'nffGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame':   36 obs. of  3 variables:
##  $ effort : num  12 15 12 10 10 14 13 12 7 14 ...
##  $ Type   : Factor w/ 4 levels "T1","T2","T3",..: 1 2 3 4 1 2 3 4 1 2 ...
##  $ Subject: Ord.factor w/ 9 levels "8"<"5"<"4"<"9"<..: 8 8 8 8 9 9 9 9 6 6 ...
##  - attr(*, "formula")=Class 'formula'  language effort ~ Type | Subject
##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##  - attr(*, "labels")=List of 2
##   ..$ x: chr "Type of stool"
##   ..$ y: chr "Effort required to arise"
##  - attr(*, "units")=List of 1
##   ..$ y: chr "(Borg scale)"
##  - attr(*, "FUN")=function (x)  
##   ..- attr(*, "source")= chr "function (x) mean(x, na.rm = TRUE)"
##  - attr(*, "order.groups")= logi TRUE
##Mixed effect model
summary(q2 <- lmer(effort ~ Type + (1 | Subject), data = dta2))
## Linear mixed model fit by REML ['lmerMod']
## Formula: effort ~ Type + (1 | Subject)
##    Data: dta2
## 
## REML criterion at convergence: 121.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.80200 -0.64317  0.05783  0.70100  1.63142 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 1.775    1.332   
##  Residual             1.211    1.100   
## Number of obs: 36, groups:  Subject, 9
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   8.5556     0.5760  14.853
## TypeT2        3.8889     0.5187   7.498
## TypeT3        2.2222     0.5187   4.284
## TypeT4        0.6667     0.5187   1.285
## 
## Correlation of Fixed Effects:
##        (Intr) TypeT2 TypeT3
## TypeT2 -0.450              
## TypeT3 -0.450  0.500       
## TypeT4 -0.450  0.500  0.500
##95% confident interval
confint(q2)
##                  2.5 %   97.5 %
## .sig01       0.7342354 2.287261
## .sigma       0.8119798 1.390104
## (Intercept)  7.4238425 9.687269
## TypeT2       2.8953043 4.882473
## TypeT3       1.2286377 3.215807
## TypeT4      -0.3269179 1.660251

Question 3

dta3 <- read.table("http://titan.ccunix.ccu.edu.tw/~psycfs/lmm/Data/thetaEEG.txt",header = T)
str(dta3)
## 'data.frame':    19 obs. of  10 variables:
##  $ ID  : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Ch3 : num  -3.54 5.72 0.52 0 2.07 1.67 9.13 -0.43 -0.56 1.28 ...
##  $ Ch4 : num  -3.11 5.07 -0.18 0.74 0.76 ...
##  $ Ch5 : num  -0.24 6.87 0.9 1.1 3.51 2.77 3.44 -0.31 -1.22 1.89 ...
##  $ Ch6 : num  0.42 5.96 0.6 0.13 0.6 4.55 4.8 -0.61 0.67 1.77 ...
##  $ Ch7 : num  -0.49 8.2 1.27 0.19 3.71 1.8 0.48 -1.04 -0.97 1.83 ...
##  $ Ch8 : num  2.13 4.87 1.28 0.07 1.86 4.79 1.63 -0.13 -0.98 0.91 ...
##  $ Ch17: num  -4.15 5.48 -0.95 0.8 1.49 4.51 9.94 -0.61 0 1.4 ...
##  $ Ch18: num  2.87 5.57 1.74 0.25 3.11 3.24 1.34 -0.61 -1.22 1.1 ...
##  $ Ch19: num  1.34 6.33 0.79 -0.66 1.8 3.99 1.53 -0.43 -0.91 -0.12 ...
cov(dta3[,2:9])
##           Ch3       Ch4      Ch5      Ch6      Ch7      Ch8      Ch17
## Ch3  8.645877  9.526639 5.625497 5.212582 3.849543 2.910530  9.021380
## Ch4  9.526639 12.348605 5.209576 6.170981 2.671112 3.218435 10.720563
## Ch5  5.625497  5.209576 5.560076 4.205233 4.540831 3.504274  5.730063
## Ch6  5.212582  6.170981 4.205233 5.073637 3.083282 3.707812  6.069184
## Ch7  3.849543  2.671112 4.540831 3.083282 5.181343 2.903964  3.451603
## Ch8  2.910530  3.218435 3.504274 3.707812 2.903964 4.281098  3.589004
## Ch17 9.021380 10.720563 5.730063 6.069184 3.451603 3.589004 10.738754
## Ch18 3.547645  2.416258 4.215412 3.657924 3.811479 3.189672  3.378316
##          Ch18
## Ch3  3.547645
## Ch4  2.416258
## Ch5  4.215412
## Ch6  3.657924
## Ch7  3.811479
## Ch8  3.189672
## Ch17 3.378316
## Ch18 6.769626
dta3_melt <- melt(dta3,id.vars = "ID",measure.vars = c("Ch3","Ch4","Ch5","Ch6","Ch7","Ch8","Ch17","Ch18","Ch19"),
                  variable.name = "Channel",value.name = "Response")
str(dta3_melt)
## 'data.frame':    171 obs. of  3 variables:
##  $ ID      : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Channel : Factor w/ 9 levels "Ch3","Ch4","Ch5",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Response: num  -3.54 5.72 0.52 0 2.07 1.67 9.13 -0.43 -0.56 1.28 ...
# set ggplot theme to black and white
theme_set(theme_bw())

##GGPLOT
facetshade(dta3_melt, aes(ID, Response), f = . ~ Channel ) + 
  geom_point( color = alpha(1, 0.1) ) +
  geom_hline(yintercept = mean(dta3_melt$Response), linetype = "dashed") +
  geom_point( data = dta3_melt )  +
  labs(x = "ID", y = "Response")

dta3_melt$ID <- as.factor(dta3_melt$ID)
dta3_melt$Channel <- as.factor(dta3_melt$Channel)
leveneTest(data = dta3_melt,  Response~ ID)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value   Pr(>F)    
## group  18  4.0777 6.89e-07 ***
##       152                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(data = dta3_melt, Response ~ Channel)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   8  0.4616 0.8816
##       162
# random effect by aov
summary(q3_1 <- aov(Response ~ Channel + Error(ID), data = dta3_melt))
## 
## Error: ID
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 18  765.7   42.54               
## 
## Error: Within
##            Df Sum Sq Mean Sq F value Pr(>F)
## Channel     8   10.7   1.338   0.495  0.858
## Residuals 144  389.3   2.704
# random effect by lme
summary(q3_2 <- lmer(Response ~ Channel + (1 | ID) - 1, data = dta3_melt))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Response ~ Channel + (1 | ID) - 1
##    Data: dta3_melt
## 
## REML criterion at convergence: 697
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6502 -0.3882 -0.0002  0.4215  4.6394 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 4.426    2.104   
##  Residual             2.704    1.644   
## Number of obs: 171, groups:  ID, 19
## 
## Fixed effects:
##             Estimate Std. Error t value
## ChannelCh3    0.9011     0.6126   1.471
## ChannelCh4    1.5895     0.6126   2.595
## ChannelCh5    1.0374     0.6126   1.694
## ChannelCh6    1.1458     0.6126   1.870
## ChannelCh7    0.8511     0.6126   1.389
## ChannelCh8    0.8526     0.6126   1.392
## ChannelCh17   1.4026     0.6126   2.290
## ChannelCh18   0.8542     0.6126   1.395
## ChannelCh19   0.9947     0.6126   1.624
## 
## Correlation of Fixed Effects:
##             ChnnC3 ChnnC4 ChnnC5 ChnnC6 ChnnC7 ChnnC8 ChnC17 ChnC18
## ChannelCh4  0.621                                                  
## ChannelCh5  0.621  0.621                                           
## ChannelCh6  0.621  0.621  0.621                                    
## ChannelCh7  0.621  0.621  0.621  0.621                             
## ChannelCh8  0.621  0.621  0.621  0.621  0.621                      
## ChannelCh17 0.621  0.621  0.621  0.621  0.621  0.621               
## ChannelCh18 0.621  0.621  0.621  0.621  0.621  0.621  0.621        
## ChannelCh19 0.621  0.621  0.621  0.621  0.621  0.621  0.621  0.621
# profile confidence intervals
confint(q3_2)
##                   2.5 %   97.5 %
## .sig01       1.49440911 2.972004
## .sigma       1.43604215 1.798638
## ChannelCh3  -0.29635638 2.098462
## ChannelCh4   0.39206468 2.786883
## ChannelCh5  -0.16004059 2.234777
## ChannelCh6  -0.05161953 2.343198
## ChannelCh7  -0.34635638 2.048462
## ChannelCh8  -0.34477743 2.050041
## ChannelCh17  0.20522257 2.600041
## ChannelCh18 -0.34319848 2.051619
## ChannelCh19 -0.20267217 2.192146

Question 4

dta4 <- read.table("http://titan.ccunix.ccu.edu.tw/~psycfs/lmm/Data/skin_resistance.txt",header = T)
str(dta4)
## 'data.frame':    80 obs. of  3 variables:
##  $ Electrode: Factor w/ 5 levels "E1","E2","E3",..: 1 2 3 4 5 1 2 3 4 5 ...
##  $ Subject  : Factor w/ 16 levels "S1","S10","S11",..: 1 1 1 1 1 9 9 9 9 9 ...
##  $ Kohm     : int  500 400 98 200 250 660 600 600 75 310 ...
summary(q4 <- aov(Kohm ~ Electrode + Error(Subject/Electrode), data = dta4))
## 
## Error: Subject
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Residuals 15 1399155   93277               
## 
## Error: Subject:Electrode
##           Df  Sum Sq Mean Sq F value Pr(>F)  
## Electrode  4  281575   70394   3.146 0.0205 *
## Residuals 60 1342723   22379                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# show grand mean and Electrode means
model.tables(q4, "means")
## Tables of means
## Grand mean
##        
## 203.05 
## 
##  Electrode 
## Electrode
##     E1     E2     E3     E4     E5 
## 181.69 287.31 258.00 150.37 137.87
# show Electrode effects
model.tables(q4, se = TRUE)
## Tables of effects
## 
##  Electrode 
## Electrode
##     E1     E2     E3     E4     E5 
## -21.36  84.26  54.95 -52.68 -65.18 
## 
## Standard errors of effects
##         Electrode
##              37.4
## replic.        16
#Intraclass correlation
((93277-22379)/5)/((93277-22379)/5+(70394-22379)/16+22379)
## [1] 0.358437

Question 5

data(dermalridgesMZ)
dta5 <- dermalridgesMZ
str(dta5)
## 'data.frame':    36 obs. of  5 variables:
##  $ sex  : Factor w/ 2 levels "female","male": 1 1 1 1 2 2 1 1 1 1 ...
##  $ left : int  95 90 93 80 99 94 55 48 41 26 ...
##  $ right: num  83 85 90 80 94 99 61 54 24 42 ...
##  $ group: Factor w/ 2 levels "normal","psychotic&neurotic": 2 2 2 2 2 2 2 2 2 2 ...
##  $ id   : int  1 1 2 2 3 3 4 4 5 5 ...
##  - attr(*, "na.action")=Class 'omit'  Named int [1:12] 37 38 39 40 41 42 43 44 45 46 ...
##   .. ..- attr(*, "names")= chr [1:12] "37" "38" "39" "40" ...
dta5$id <- as.factor(dta5$id)
leveneTest(data = dta5, left ~ id)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df    F value    Pr(>F)    
## group 17 1.1576e+30 < 2.2e-16 ***
##       18                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(data = dta5, left ~ sex)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  1  2.1467 0.1521
##       34
leveneTest(data = dta5, left ~ group)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  1  0.2457 0.6233
##       34
summary(q5 <- lmer(left ~ right + sex +
                       group + (1 | id), data = dta5))
## Linear mixed model fit by REML ['lmerMod']
## Formula: left ~ right + sex + group + (1 | id)
##    Data: dta5
## 
## REML criterion at convergence: 246.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0212 -0.5041 -0.0385  0.5361  2.0965 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  0.00    0.000   
##  Residual             74.67    8.641   
## Number of obs: 36, groups:  id, 18
## 
## Fixed effects:
##                         Estimate Std. Error t value
## (Intercept)             -1.58701    5.41931  -0.293
## right                    0.98097    0.07267  13.500
## sexmale                  3.64364    3.04497   1.197
## grouppsychotic&neurotic  0.92776    3.07857   0.301
## 
## Correlation of Fixed Effects:
##             (Intr) right  sexmal
## right       -0.869              
## sexmale      0.022 -0.229       
## grppsychtc& -0.440  0.094 -0.100
confint(q5)
##                               2.5 %    97.5 %
## .sig01                    0.0000000  5.078684
## .sigma                    6.5741586 10.463115
## (Intercept)             -11.8743782  8.700349
## right                     0.8430274  1.118908
## sexmale                  -2.1365654  9.423854
## grouppsychotic&neurotic  -4.9162182  6.771739

Question 6

dta6 <- read.table("http://titan.ccunix.ccu.edu.tw/~psycfs/lmm/Data/dog_scans.txt",header = T)
str(dta6)
## 'data.frame':    55 obs. of  4 variables:
##  $ Dog      : Factor w/ 11 levels "Aussie","Corrie",..: 9 11 11 11 11 11 11 7 7 7 ...
##  $ Observer : Factor w/ 3 levels "A","B","C": 3 3 2 1 3 2 1 3 2 1 ...
##  $ Scan     : Factor w/ 29 levels "dog_100","dog_101",..: 14 15 15 15 16 16 16 17 17 17 ...
##  $ Thickness: num  2.6 4.93 3.47 5.29 2.54 2.8 3 3.57 3.3 2.66 ...
##Fixed effect
anova(q6 <- lm(Thickness ~ Dog+Observer+Scan - 1, data = dta6))
## Analysis of Variance Table
## 
## Response: Thickness
##           Df  Sum Sq Mean Sq  F value  Pr(>F)    
## Dog       11 1039.59  94.508 104.3095 < 2e-16 ***
## Observer   2    1.85   0.924   1.0202 0.37564    
## Scan      18   33.02   1.834   2.0245 0.05348 .  
## Residuals 24   21.74   0.906                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Mixed effect model
summary(q6_2 <- lmer(Thickness ~ (1 | Observer) + (1 | Dog) +
                     (1 | Dog:Observer) + (1 | Scan), data = dta6))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Thickness ~ (1 | Observer) + (1 | Dog) + (1 | Dog:Observer) +  
##     (1 | Scan)
##    Data: dta6
## 
## REML criterion at convergence: 177.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8144 -0.5141 -0.0410  0.3252  1.6897 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  Scan         (Intercept) 0.70477  0.8395  
##  Dog:Observer (Intercept) 0.30706  0.5541  
##  Dog          (Intercept) 0.29388  0.5421  
##  Observer     (Intercept) 0.08284  0.2878  
##  Residual                 0.56554  0.7520  
## Number of obs: 55, groups:  
## Scan, 29; Dog:Observer, 28; Dog, 11; Observer, 3
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   4.4157     0.3298   13.39

Question 7

dta7 <- read.table("http://titan.ccunix.ccu.edu.tw/~psycfs/lmm/Data/healthAwareness.txt",header = T)
str(dta7)
## 'data.frame':    45 obs. of  4 variables:
##  $ Index    : num  42 56 35 40 28 26 38 42 35 53 ...
##  $ State    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ City     : int  1 1 1 1 1 2 2 2 2 2 ...
##  $ Household: int  1 2 3 4 5 1 2 3 4 5 ...
dta7 %<>% mutate(city_num = State*10+City)
ggplot(data= dta7,aes(x=city_num,y=Index))+facet_grid(.~State)+geom_point()

dta7$State <- as.factor(dta7$State)
dta7$City <- as.factor(dta7$City)
dta7$Household <- as.factor(dta7$Household)    
summary(q7 <- lmer(Index ~ (1 | State) + (State | City) +(City|Household)
                        , data = dta7))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Index ~ (1 | State) + (State | City) + (City | Household)
##    Data: dta7
## 
## REML criterion at convergence: 336.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.55296 -0.75218  0.01324  0.68583  1.76317 
## 
## Random effects:
##  Groups    Name        Variance  Std.Dev.  Corr       
##  Household (Intercept) 1.334e+01 3.652e+00            
##            City2       1.884e+01 4.341e+00 -0.97      
##            City3       3.123e+01 5.589e+00 -0.99  1.00
##  City      (Intercept) 9.438e-14 3.072e-07            
##            State2      3.650e-12 1.910e-06 -0.97      
##            State3      8.089e-13 8.994e-07 -0.92  0.79
##  State     (Intercept) 2.266e+02 1.505e+01            
##  Residual              9.002e+01 9.488e+00            
## Number of obs: 45, groups:  Household, 5; City, 3; State, 3
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   41.760      8.811    4.74

Question 8

dta8 <-read.table("http://www.biostat.ucsf.edu/vgsm/1st_ed/data/gababies.txt",header = T)
str(dta8)
## 'data.frame':    1000 obs. of  11 variables:
##  $ momid   : int  39 39 39 39 39 62 62 62 62 62 ...
##  $ birthord: int  1 2 3 4 5 1 2 3 4 5 ...
##  $ momage  : int  15 17 19 24 25 17 21 25 27 28 ...
##  $ timesnc : int  0 2 4 9 10 0 4 8 10 11 ...
##  $ delwght : int  -1240 -1240 -1240 -1240 -1240 -170 -170 -170 -170 -170 ...
##  $ lowbrth : int  0 0 0 0 1 1 1 1 1 1 ...
##  $ bweight : int  3720 3260 3910 3320 2480 2381 2835 2381 2268 2211 ...
##  $ lastwght: int  2480 2480 2480 2480 2480 2211 2211 2211 2211 2211 ...
##  $ initage : int  15 15 15 15 15 17 17 17 17 17 ...
##  $ initwght: int  3720 3720 3720 3720 3720 2381 2381 2381 2381 2381 ...
##  $ cinitage: num  -2.55 -2.55 -2.55 -2.55 -2.55 ...
dta8$momid <- as.factor(dta8$momid)
dta8$birthord <- as.factor(dta8$birthord)
leveneTest(data = dta8, bweight ~ momid)##不顯著
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group 199  0.9587 0.6376
##       800
leveneTest(data = dta8, bweight ~ birthord)##不顯著
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   4  0.4022 0.8071
##       995
##全部假設fixed effect
summary(q7 <- lm(bweight ~ momid + birthord +momage+timesnc+delwght+lowbrth+lastwght+initage+initwght+cinitage
                   , data = dta8))
## 
## Call:
## lm(formula = bweight ~ momid + birthord + momage + timesnc + 
##     delwght + lowbrth + lastwght + initage + initwght + cinitage, 
##     data = dta8)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1937.1  -174.6     7.6   183.6  1399.7 
## 
## Coefficients: (6 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 3323.561    171.174  19.416  < 2e-16 ***
## momid62     -391.962    224.447  -1.746 0.081138 .  
## momid79     -381.972    222.915  -1.714 0.087005 .  
## momid80      145.036    223.050   0.650 0.515724    
## momid84      142.752    222.685   0.641 0.521676    
## momid92     -436.908    223.780  -1.952 0.051241 .  
## momid108    -274.484    222.673  -1.233 0.218060    
## momid113      49.930    226.355   0.221 0.825475    
## momid125     142.532    222.566   0.640 0.522095    
## momid135     -96.446    222.990  -0.433 0.665487    
## momid199    -134.580    222.700  -0.604 0.545809    
## momid200     -40.263    222.797  -0.181 0.856638    
## momid221      43.510    222.788   0.195 0.845211    
## momid247    -264.386    222.653  -1.187 0.235410    
## momid304    -159.288    223.243  -0.714 0.475734    
## momid336     300.324    222.690   1.349 0.177843    
## momid547     -43.973    223.587  -0.197 0.844136    
## momid853     152.339    225.839   0.675 0.500161    
## momid960     292.118    222.924   1.310 0.190442    
## momid1232   -208.047    223.126  -0.932 0.351402    
## momid1448    -46.543    222.677  -0.209 0.834488    
## momid1638     91.732    224.084   0.409 0.682383    
## momid1706    -68.099    222.977  -0.305 0.760137    
## momid1785   -291.692    224.262  -1.301 0.193748    
## momid1856   -137.930    222.827  -0.619 0.536093    
## momid2083   -325.145    223.963  -1.452 0.146958    
## momid2166   -692.692    224.262  -3.089 0.002080 ** 
## momid2292   -138.508    222.923  -0.621 0.534564    
## momid2301   -175.482    222.653  -0.788 0.430852    
## momid2383    -89.474    222.634  -0.402 0.687875    
## momid2519   -399.137    224.375  -1.779 0.075641 .  
## momid2598    304.189    222.667   1.366 0.172288    
## momid2613   -378.139    223.222  -1.694 0.090657 .  
## momid2647   -103.836    226.295  -0.459 0.646465    
## momid2735    -82.766    222.960  -0.371 0.710576    
## momid2822   -142.375    222.931  -0.639 0.523233    
## momid2899    -64.684    222.673  -0.290 0.771517    
## momid2906    470.224    223.816   2.101 0.035961 *  
## momid2918    -24.017    222.664  -0.108 0.914133    
## momid2928     73.431    222.925   0.329 0.741943    
## momid3044    447.718    222.653   2.011 0.044681 *  
## momid3168    -91.408    222.706  -0.410 0.681592    
## momid3308   -231.629    223.380  -1.037 0.300086    
## momid3377   -242.434    222.946  -1.087 0.277184    
## momid3431   -158.371    222.961  -0.710 0.477720    
## momid3438    -67.449    223.065  -0.302 0.762447    
## momid3469     50.865    222.571   0.229 0.819291    
## momid3477    -83.001    222.975  -0.372 0.709811    
## momid3480    -80.180    222.700  -0.360 0.718916    
## momid3504   -786.827    224.349  -3.507 0.000478 ***
## momid3526   -172.951    224.099  -0.772 0.440486    
## momid3668    152.671    222.587   0.686 0.492982    
## momid3797    -83.640    222.918  -0.375 0.707608    
## momid3838    -83.089    224.152  -0.371 0.710975    
## momid3936    223.194    222.615   1.003 0.316360    
## momid4154   -251.804    223.115  -1.129 0.259414    
## momid4194   -338.974    222.849  -1.521 0.128634    
## momid4341   -178.758    222.817  -0.802 0.422641    
## momid4411   -194.544    223.646  -0.870 0.384633    
## momid4438     28.518    222.653   0.128 0.898114    
## momid4482    391.389    222.667   1.758 0.079178 .  
## momid4503    -63.023    223.355  -0.282 0.777890    
## momid4566    656.710    222.788   2.948 0.003295 ** 
## momid4631   -223.732    222.566  -1.005 0.315088    
## momid4664    -40.623    222.762  -0.182 0.855347    
## momid4690   -143.103    223.537  -0.640 0.522244    
## momid4708    260.645    222.739   1.170 0.242278    
## momid4714   -723.375    222.931  -3.245 0.001224 ** 
## momid4755   -552.459    224.431  -2.462 0.014043 *  
## momid4845    707.618    224.348   3.154 0.001671 ** 
## momid4890    -34.175    222.931  -0.153 0.878201    
## momid4891   -285.391    222.679  -1.282 0.200347    
## momid4987   -250.023    223.355  -1.119 0.263309    
## momid5120    -65.237    222.919  -0.293 0.769867    
## momid5160     38.203    222.578   0.172 0.863765    
## momid5262   -218.335    226.104  -0.966 0.334518    
## momid5286   -367.635    223.506  -1.645 0.100396    
## momid5337    -87.243    222.941  -0.391 0.695661    
## momid5340   -317.982    224.190  -1.418 0.156478    
## momid5435   -113.456    222.735  -0.509 0.610630    
## momid5501    562.980    222.700   2.528 0.011665 *  
## momid5513    231.651    222.657   1.040 0.298474    
## momid5554   -314.479    222.659  -1.412 0.158231    
## momid5726   -336.285    223.411  -1.505 0.132663    
## momid5828   -226.211    222.667  -1.016 0.309978    
## momid5847    -99.752    222.685  -0.448 0.654311    
## momid6039   -267.122    223.336  -1.196 0.232031    
## momid6065   -172.636    226.295  -0.763 0.445761    
## momid6123    -86.761    223.369  -0.388 0.697808    
## momid6150    135.218    224.348   0.603 0.546869    
## momid6201   -202.813    223.685  -0.907 0.364847    
## momid6246   -205.282    222.924  -0.921 0.357402    
## momid6443     23.454    222.654   0.105 0.916135    
## momid6533     77.175    223.177   0.346 0.729584    
## momid6534    359.648    222.685   1.615 0.106697    
## momid6601   -175.795    222.770  -0.789 0.430271    
## momid6610    -86.417    222.664  -0.388 0.698043    
## momid6711    -37.012    222.767  -0.166 0.868085    
## momid6737   -157.153    224.092  -0.701 0.483329    
## momid6790   -781.291    223.352  -3.498 0.000495 ***
## momid6847   -437.797    224.210  -1.953 0.051216 .  
## momid6932   -173.186    222.653  -0.778 0.436900    
## momid6960    -56.721    222.802  -0.255 0.799115    
## momid6981     13.397    224.037   0.060 0.952333    
## momid7086    -24.451    222.657  -0.110 0.912585    
## momid7184   -378.987    223.244  -1.698 0.089969 .  
## momid7209   -152.947    222.840  -0.686 0.492690    
## momid7320     40.666    222.896   0.182 0.855282    
## momid7406   -101.388    222.767  -0.455 0.649139    
## momid7413   -219.048    222.685  -0.984 0.325580    
## momid7468    461.274    222.634   2.072 0.038598 *  
## momid7472   -145.780    222.700  -0.655 0.512913    
## momid7556     -9.200    222.565  -0.041 0.967038    
## momid7733     79.758    222.817   0.358 0.720474    
## momid7752   -339.167    223.478  -1.518 0.129494    
## momid7782    -45.313    222.718  -0.203 0.838833    
## momid7791   -370.952    223.394  -1.661 0.097203 .  
## momid7866   -143.177    222.762  -0.643 0.520580    
## momid7931   -141.876    222.690  -0.637 0.524244    
## momid7932    198.805    222.770   0.892 0.372437    
## momid8086     62.344    222.735   0.280 0.779625    
## momid8231   -230.673    223.830  -1.031 0.303056    
## momid8281   -210.423    223.355  -0.942 0.346428    
## momid8429    -41.267    222.934  -0.185 0.853192    
## momid8485    -64.271    222.587  -0.289 0.772853    
## momid8523   -566.797    224.210  -2.528 0.011665 *  
## momid8544   -392.811    223.607  -1.757 0.079354 .  
## momid8677   -410.251    222.657  -1.843 0.065771 .  
## momid8734   -140.555    223.352  -0.629 0.529336    
## momid8792   -135.496    223.046  -0.607 0.543707    
## momid8918    -95.508    222.923  -0.428 0.668452    
## momid9216    -79.850    222.970  -0.358 0.720349    
## momid9288    -95.143    222.677  -0.427 0.669298    
## momid9504    154.460    222.725   0.694 0.488198    
## momid11630    44.438    223.742   0.199 0.842616    
## momid11704  -559.138    226.485  -2.469 0.013767 *  
## momid11913    29.033    223.204   0.130 0.896540    
## momid11935  -262.991    222.679  -1.181 0.237942    
## momid11939   115.679    222.659   0.520 0.603534    
## momid11973  -189.578    222.971  -0.850 0.395450    
## momid12115   139.436    223.050   0.625 0.532062    
## momid12256  -186.353    254.434  -0.732 0.464127    
## momid12614  -167.239    222.921  -0.750 0.453346    
## momid12655  -190.820    223.380  -0.854 0.393230    
## momid12751  -158.993    225.708  -0.704 0.481378    
## momid12872  -145.974    222.849  -0.655 0.512633    
## momid13156  -642.021    224.121  -2.865 0.004285 ** 
## momid13161  -224.423    223.355  -1.005 0.315308    
## momid13221   -50.180    222.700  -0.225 0.821783    
## momid13500  -102.116    222.673  -0.459 0.646655    
## momid13563  -188.162    223.742  -0.841 0.400614    
## momid14020  -178.065    222.571  -0.800 0.423929    
## momid14262  -152.401    222.975  -0.683 0.494497    
## momid14297  -194.741    230.528  -0.845 0.398498    
## momid14792  -337.333    224.142  -1.505 0.132722    
## momid14864  -276.232    223.098  -1.238 0.216022    
## momid14883   124.257    222.677   0.558 0.576992    
## momid14922  -259.494    223.361  -1.162 0.245678    
## momid14925  -274.029    223.824  -1.224 0.221200    
## momid14935   -74.682    222.924  -0.335 0.737704    
## momid14998   242.710    222.788   1.089 0.276300    
## momid15044   -55.476    222.705  -0.249 0.803346    
## momid15096   756.651    229.392   3.299 0.001015 ** 
## momid15229    40.191    223.965   0.179 0.857629    
## momid15319   -83.633    225.883  -0.370 0.711295    
## momid15552   134.977    222.762   0.606 0.544737    
## momid15621  -173.693    222.883  -0.779 0.436035    
## momid15976  -168.540    222.725  -0.757 0.449441    
## momid15985  -177.671    222.587  -0.798 0.424990    
## momid16065  -227.682    222.924  -1.021 0.307402    
## momid16327  -167.513    222.718  -0.752 0.452197    
## momid16625  -136.135    222.571  -0.612 0.540944    
## momid16673    34.995    227.456   0.154 0.877765    
## momid16735  -106.652    224.758  -0.475 0.635260    
## momid16822  -180.059    222.655  -0.809 0.418935    
## momid16840  -157.290    222.788  -0.706 0.480390    
## momid16908   -89.592    222.706  -0.402 0.687580    
## momid16911  -346.497    223.394  -1.551 0.121287    
## momid17193  -129.414    222.653  -0.581 0.561246    
## momid17229  -116.986    222.653  -0.525 0.599438    
## momid17238   -58.069    224.286  -0.259 0.795774    
## momid17735    91.884    222.673   0.413 0.679980    
## momid17743  -770.547    223.537  -3.447 0.000597 ***
## momid17961   135.591    222.679   0.609 0.542758    
## momid18559   134.009    222.679   0.602 0.547476    
## momid18849  -250.302    223.320  -1.121 0.262703    
## momid18922   632.242    222.817   2.837 0.004663 ** 
## momid19040   173.718    229.203   0.758 0.448721    
## momid19224  -162.147    223.537  -0.725 0.468440    
## momid19617   239.895    223.516   1.073 0.283472    
## momid19668   -78.174    222.849  -0.351 0.725835    
## momid19721   327.939    225.839   1.452 0.146872    
## momid19860  -152.961    222.921  -0.686 0.492808    
## momid20232  -146.691    223.352  -0.657 0.511520    
## momid20233     9.430    223.570   0.042 0.966367    
## momid20282    -6.632    224.088  -0.030 0.976396    
## momid20296    26.999    222.975   0.121 0.903654    
## momid20301  -157.361    227.318  -0.692 0.488983    
## momid20498  -282.979    225.643  -1.254 0.210175    
## momid20855   109.736    226.248   0.485 0.627793    
## birthord2     58.689     36.114   1.625 0.104534    
## birthord3     65.561     38.509   1.702 0.089055 .  
## birthord4     89.071     43.040   2.070 0.038820 *  
## birthord5    108.121     47.937   2.256 0.024373 *  
## momage         4.338      3.952   1.098 0.272623    
## timesnc           NA         NA      NA       NA    
## delwght           NA         NA      NA       NA    
## lowbrth     -683.069     31.231 -21.871  < 2e-16 ***
## lastwght          NA         NA      NA       NA    
## initage           NA         NA      NA       NA    
## initwght          NA         NA      NA       NA    
## cinitage          NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 351.9 on 794 degrees of freedom
## Multiple R-squared:  0.7075, Adjusted R-squared:  0.632 
## F-statistic:  9.37 on 205 and 794 DF,  p-value: < 2.2e-16
##Mixed effect model
summary(q7 <- lmer(bweight ~ (1|momid) + birthord +momage+timesnc+delwght+lowbrth+lastwght+initage+initwght+cinitage
                 , data = dta8))
## Linear mixed model fit by REML ['lmerMod']
## Formula: bweight ~ (1 | momid) + birthord + momage + timesnc + delwght +  
##     lowbrth + lastwght + initage + initwght + cinitage
##    Data: dta8
## 
## REML criterion at convergence: 14519.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5013 -0.5884  0.0292  0.6042  4.5802 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  momid    (Intercept)   1218    34.9   
##  Residual             124004   352.1   
## Number of obs: 1000, groups:  momid, 200
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) 2066.23470  105.15239  19.650
## birthord2     48.03047   35.75235   1.343
## birthord3     45.06267   37.17619   1.212
## birthord4     56.74891   39.96545   1.420
## birthord5     66.09795   43.11172   1.533
## momage         1.49560    3.62633   0.412
## timesnc        7.84852    4.83976   1.622
## delwght       -0.17052    0.02231  -7.644
## lowbrth     -694.85604   26.34420 -26.376
## lastwght       0.39027    0.02719  14.355
## 
## Correlation of Fixed Effects:
##           (Intr) brthr2 brthr3 brthr4 brthr5 momage timsnc dlwght lwbrth
## birthord2 -0.167                                                        
## birthord3 -0.160  0.522                                                 
## birthord4 -0.143  0.516  0.569                                          
## birthord5 -0.117  0.502  0.571  0.632                                   
## momage    -0.472  0.010  0.017  0.025  0.030                            
## timesnc    0.310 -0.114 -0.211 -0.313 -0.383 -0.780                     
## delwght    0.419  0.029  0.055  0.084  0.108  0.076 -0.183              
## lowbrth   -0.484  0.017  0.027  0.025  0.001  0.031  0.021 -0.194       
## lastwght  -0.751 -0.008 -0.017 -0.031 -0.051 -0.168  0.201 -0.585  0.442
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients