2.Identify the study design of the ergoStool example and replicate the results of analysis reported.
require(nlme)
## Loading required package: nlme
require(lme4)
## Loading required package: lme4
## Loading required package: Matrix
##
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
##
## lmList
require(ggplot2)
## Loading required package: ggplot2
dta<-ergoStool
str(dta)
Classes 'nffGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 36 obs. of 3 variables:
$ effort : num 12 15 12 10 10 14 13 12 7 14 ...
$ Type : Factor w/ 4 levels "T1","T2","T3",..: 1 2 3 4 1 2 3 4 1 2 ...
$ Subject: Ord.factor w/ 9 levels "8"<"5"<"4"<"9"<..: 8 8 8 8 9 9 9 9 6 6 ...
- attr(*, "formula")=Class 'formula' language effort ~ Type | Subject
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Type of stool"
..$ y: chr "Effort required to arise"
- attr(*, "units")=List of 1
..$ y: chr "(Borg scale)"
- attr(*, "FUN")=function (x)
..- attr(*, "source")= chr "function (x) mean(x, na.rm = TRUE)"
- attr(*, "order.groups")= logi TRUE
#plot_Type
ggplot(data = dta, aes(x = Type, y = effort, color = Type)) +
stat_summary(fun.y = mean, geom = "point", size = 2) +
stat_summary(fun.data = mean_se, geom = "errorbar",
linetype = "solid", width = .2) +
coord_flip()+
theme_bw()
#plot_Subject
ggplot(data = dta, aes(x = Subject, y = effort, color = Subject)) +
stat_summary(fun.y = mean, geom = "point", size = 2) +
stat_summary(fun.data = mean_se, geom = "errorbar",
linetype = "solid", width = .2) +
coord_flip()+
theme_bw()
# Means
tapply(dta$effort, dta$Type, mean)
T1 T2 T3 T4
8.555556 12.444444 10.777778 9.222222
tapply(dta$effort, dta$Subject, mean)
8 5 4 9 6 3 7 1 2
8.25 8.50 9.25 10.00 10.25 10.75 10.75 12.25 12.25
#One within-subjects design
summary(m0 <- lmer(effort ~ Type + (1 | Subject), data = dta))
Linear mixed model fit by REML ['lmerMod']
Formula: effort ~ Type + (1 | Subject)
Data: dta
REML criterion at convergence: 121.1
Scaled residuals:
Min 1Q Median 3Q Max
-1.80200 -0.64317 0.05783 0.70100 1.63142
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 1.775 1.332
Residual 1.211 1.100
Number of obs: 36, groups: Subject, 9
Fixed effects:
Estimate Std. Error t value
(Intercept) 8.5556 0.5760 14.853
TypeT2 3.8889 0.5187 7.498
TypeT3 2.2222 0.5187 4.284
TypeT4 0.6667 0.5187 1.285
Correlation of Fixed Effects:
(Intr) TypeT2 TypeT3
TypeT2 -0.450
TypeT3 -0.450 0.500
TypeT4 -0.450 0.500 0.500
#95% CI
confint(m0, oldNames = FALSE)
Computing profile confidence intervals ...
2.5 % 97.5 %
sd_(Intercept)|Subject 0.7342354 2.287261
sigma 0.8119798 1.390104
(Intercept) 7.4238425 9.687269
TypeT2 2.8953043 4.882473
TypeT3 1.2286377 3.215807
TypeT4 -0.3269179 1.660251