cooc.gam.sqrt.te<-gam(cooc.z~te(phy.dist.sqrt,gen.spec), dat=data.cooc)
summary(cooc.gam.sqrt.te)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cooc.z ~ te(phy.dist.sqrt, gen.spec)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1580 0.1184 -1.335 0.182
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## te(phy.dist.sqrt,gen.spec) 3.68 4.118 2.707 0.0284 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0148 Deviance explained = 2.13%
## GCV = 7.9272 Scale est. = 7.8611 n = 561
cooc.gam.30<-gam(cooc.z.30~te(phy.dist.30.sqrt,gen.spec.30), dat=data.cooc.30)
summary(cooc.gam.30)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cooc.z.30 ~ te(phy.dist.30.sqrt, gen.spec.30)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6962 0.2335 -2.982 0.00348 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## te(phy.dist.30.sqrt,gen.spec.30) 3 3 0.922 0.433
##
## R-sq.(adj) = -0.00194 Deviance explained = 2.29%
## GCV = 6.8764 Scale est. = 6.651 n = 122
mean.cooc.gam.sqrt.te<-gam(cooc.z~te(mean.phy.dist.sqrt,gen.spec), dat=mean.data.cooc)
summary(mean.cooc.gam.sqrt.te)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cooc.z ~ te(mean.phy.dist.sqrt, gen.spec)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1580 0.1183 -1.335 0.182
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## te(mean.phy.dist.sqrt,gen.spec) 3 3 3.907 0.00884 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0153 Deviance explained = 2.06%
## GCV = 7.9133 Scale est. = 7.8569 n = 561
mean.cooc.gam.30<-gam(cooc.z~te(mean.phy.dist.30.sqrt,gen.spec), dat=mean.data.cooc.30)
summary(mean.cooc.gam.30)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cooc.z ~ te(mean.phy.dist.30.sqrt, gen.spec)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6962 0.2327 -2.992 0.00338 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## te(mean.phy.dist.30.sqrt,gen.spec) 3 3 1.193 0.315
##
## R-sq.(adj) = 0.00477 Deviance explained = 2.94%
## GCV = 6.8304 Scale est. = 6.6064 n = 122
```
sedges.partial.mantel<-mantel.partial(phy.dist.cyp, hypervolume.matrix.abs, z.mat, method = "pearson", permutations = 999)
sedges.partial.mantel
##
## Partial Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel.partial(xdis = phy.dist.cyp, ydis = hypervolume.matrix.abs, zdis = z.mat, method = "pearson", permutations = 999)
##
## Mantel statistic r: 0.1167
## Significance: 0.082
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.107 0.142 0.187 0.275
## Permutation: free
## Number of permutations: 999
sedges.phy.dist.mantel<-mantel(phy.dist.cyp, z.mat, method = "pearson", permutations = 999)
sedges.phy.dist.mantel
##
## Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel(xdis = phy.dist.cyp, ydis = z.mat, method = "pearson", permutations = 999)
##
## Mantel statistic r: 0.0957
## Significance: 0.003
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.0549 0.0675 0.0753 0.0827
## Permutation: free
## Number of permutations: 999
sedges.gen.spec.mantel<-mantel(hypervolume.matrix.abs, z.mat,method = "pearson", permutations = 999)
sedges.gen.spec.mantel
##
## Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel(xdis = hypervolume.matrix.abs, ydis = z.mat, method = "pearson", permutations = 999)
##
## Mantel statistic r: -0.03259
## Significance: 0.781
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.0537 0.0688 0.0796 0.0909
## Permutation: free
## Number of permutations: 999
#I don't think that this is possible for <30 my because not a symmetrical matrix
mean.sedges.partial.mantel<-mantel.partial(phy.dist.cyp, hypervolume.matrix.mean, z.mat, method = "pearson", permutations = 999)
mean.sedges.partial.mantel
##
## Partial Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel.partial(xdis = phy.dist.cyp, ydis = hypervolume.matrix.mean, zdis = z.mat, method = "pearson", permutations = 999)
##
## Mantel statistic r: 0.1811
## Significance: 0.074
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.162 0.198 0.222 0.272
## Permutation: free
## Number of permutations: 999
mean.sedges.phy.dist.mantel<-mantel(phy.dist.cyp, z.mat, method = "pearson", permutations = 999)
mean.sedges.phy.dist.mantel
##
## Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel(xdis = phy.dist.cyp, ydis = z.mat, method = "pearson", permutations = 999)
##
## Mantel statistic r: 0.0957
## Significance: 0.005
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.0559 0.0678 0.0764 0.0874
## Permutation: free
## Number of permutations: 999
mean.sedges.gen.spec.mantel<-mantel(hypervolume.matrix.mean, z.mat,method = "pearson", permutations = 999)
mean.sedges.gen.spec.mantel
##
## Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel(xdis = hypervolume.matrix.mean, ydis = z.mat, method = "pearson", permutations = 999)
##
## Mantel statistic r: -0.05621
## Significance: 0.872
##
## Upper quantiles of permutations (null model):
## 90% 95% 97.5% 99%
## 0.0678 0.0840 0.1008 0.1173
## Permutation: free
## Number of permutations: 999