library(rattle)
## Rattle: A free graphical interface for data mining with R.
## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(MASS)
data("Boston")
str(Boston)
## 'data.frame':    506 obs. of  14 variables:
##  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...
##  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
##  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
##  $ chas   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
##  $ rm     : num  6.58 6.42 7.18 7 7.15 ...
##  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
##  $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...
##  $ rad    : int  1 2 2 3 3 3 5 5 5 5 ...
##  $ tax    : num  296 242 242 222 222 222 311 311 311 311 ...
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
##  $ black  : num  397 397 393 395 397 ...
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
Boston2=Boston[,c(6,11:14)]
str(Boston2)
## 'data.frame':    506 obs. of  5 variables:
##  $ rm     : num  6.58 6.42 7.18 7 7.15 ...
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
##  $ black  : num  397 397 393 395 397 ...
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
names(Boston2)
## [1] "rm"      "ptratio" "black"   "lstat"   "medv"
clusters=8
Boston2.cl=kmeans(Boston2,clusters)
Boston2.cl
## K-means clustering with 8 clusters of sizes 75, 60, 193, 29, 72, 36, 13, 28
## 
## Cluster means:
##         rm  ptratio     black     lstat     medv
## 1 6.980160 16.90400 392.48240  5.911600 32.44800
## 2 5.785417 19.59000 394.39217 22.365000 13.56833
## 3 6.171093 18.71762 393.87415 10.630415 21.50570
## 4 7.597724 15.95172 382.25690  4.271379 47.55517
## 5 6.106278 18.62083 368.77611 13.448889 20.47222
## 6 6.068944 19.91389  50.15417 20.477500 12.63889
## 7 6.008538 18.28462 228.75846 18.757692 17.36923
## 8 5.778143 18.74643 319.38929 17.581429 16.76429
## 
## Clustering vector:
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
##   3   3   1   1   1   1   3   3   2   3   2   3   3   3   5   3   3   3 
##  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36 
##   8   3   5   3   2   2   2   8   5   8   3   5   5   5   7   5   7   3 
##  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54 
##   5   3   3   1   1   1   1   3   3   3   3   2   2   3   3   3   3   3 
##  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72 
##   3   1   3   1   3   3   3   5   3   3   1   3   3   3   3   3   3   5 
##  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90 
##   3   5   3   3   5   3   3   3   1   3   3   3   3   1   3   3   3   1 
##  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 
##   3   3   3   3   3   5   3   1   1   1   3   3   6   3   3   3   2   3 
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 
##   3   3   3   3   3   3   3   5   3   3   8   3   3   5   5   5   5   3 
## 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 
##   5   2   3   2   3   3   3   3   7   2   5   3   2   2   2   2   2   2 
## 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 
##   2   7   7   2   5   5   5   8   8   7   8   6   6   4   5   5   8   4 
## 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
##   4   4   3   7   4   7   8   8   8   5   3   3   3   1   3   3   1   1 
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 
##   1   1   1   1   3   1   4   1   1   1   4   1   1   1   5   4   1   5 
## 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 
##   1   1   1   3   1   4   4   3   3   3   5   2   3   2   3   1   5   3 
## 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 
##   3   1   3   3   3   2   1   1   4   4   1   5   4   1   5   5   4   4 
## 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 
##   5   5   3   1   5   3   3   3   5   5   5   2   3   5   5   3   3   5 
## 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 
##   1   1   3   3   4   4   1   1   1   4   4   1   1   3   1   4   4   3 
## 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 
##   3   3   3   1   1   1   1   1   1   1   4   1   4   4   1   3   8   3 
## 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 
##   3   5   1   1   1   3   3   1   1   3   5   5   3   3   1   1   1   1 
## 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 
##   1   1   3   3   5   3   3   3   3   3   2   3   3   3   3   3   3   3 
## 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 
##   3   3   3   3   3   5   5   3   5   3   3   3   3   3   3   3   3   1 
## 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 
##   3   3   1   3   5   3   3   1   3   5   3   1   3   5   5   3   3   3 
## 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 
##   5   5   5   5   5   5   8   6   4   4   4   4   4   2   2   3   5   2 
## 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 
##   2   2   2   2   2   2   8   2   2   2   5   2   2   5   2   2   2   2 
## 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 
##   2   2   2   8   2   2   5   2   8   2   5   8   8   7   6   6   6   7 
## 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 
##   6   6   6   6   6   6   8   8   8   6   6   6   6   6   6   6   6   6 
## 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 
##   6   6   6   6   6   6   6   2   2   2   3   2   7   6   8   2   2   8 
## 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 
##   6   5   2   5   6   6   6   6   7   3   7   3   3   3   3   8   6   8 
## 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 
##   5   3   3   3   3   5   5   8   2   5   5   3   3   3   3   3   5   3 
## 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 
##   3   3   2   8   8   2   3   3   3   3   2   3   3   3   3   3   3   3 
## 505 506 
##   3   3 
## 
## Within cluster sum of squares by cluster:
## [1]  3358.768  3468.721  6340.040  3880.316 12970.421 59413.964 15688.620
## [8] 11260.822
##  (between_SS / total_SS =  97.3 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
Boston2.cl$centers
##         rm  ptratio     black     lstat     medv
## 1 6.980160 16.90400 392.48240  5.911600 32.44800
## 2 5.785417 19.59000 394.39217 22.365000 13.56833
## 3 6.171093 18.71762 393.87415 10.630415 21.50570
## 4 7.597724 15.95172 382.25690  4.271379 47.55517
## 5 6.106278 18.62083 368.77611 13.448889 20.47222
## 6 6.068944 19.91389  50.15417 20.477500 12.63889
## 7 6.008538 18.28462 228.75846 18.757692 17.36923
## 8 5.778143 18.74643 319.38929 17.581429 16.76429
plot(Boston2[4:5],col=Boston2.cl$cluster)
points(Boston2.cl$centers,pch=19,cex=1.5,col=1:clusters)