Uribe SE, Galdames V
library("dplyr")
Attaching package: ‘dplyr’
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
library("meta")
Loading 'meta' package (version 4.5-0).
library("ggplot2")
library("metafor")
Loading required package: Matrix
Loading 'metafor' package (version 1.9-9). For an overview
and introduction to the package please type: help(metafor).
Attaching package: ‘metafor’
The following objects are masked from ‘package:meta’:
baujat, forest, funnel, funnel.default, labbe, radial, trimfill
citation(package = "dplyr", lib.loc = NULL, auto = NULL)
To cite package ‘dplyr’ in publications use:
Hadley Wickham and Romain Francois (2015). dplyr: A Grammar of Data Manipulation. R package version 0.4.3.
https://CRAN.R-project.org/package=dplyr
A BibTeX entry for LaTeX users is
@Manual{,
title = {dplyr: A Grammar of Data Manipulation},
author = {Hadley Wickham and Romain Francois},
year = {2015},
note = {R package version 0.4.3},
url = {https://CRAN.R-project.org/package=dplyr},
}
citation(package = "meta", lib.loc = NULL, auto = NULL)
To cite package ‘meta’ in publications use:
Guido Schwarzer (2016). meta: General Package for Meta-Analysis. R package version 4.5-0.
https://CRAN.R-project.org/package=meta
A BibTeX entry for LaTeX users is
@Manual{,
title = {meta: General Package for Meta-Analysis},
author = {Guido Schwarzer},
year = {2016},
note = {R package version 4.5-0},
url = {https://CRAN.R-project.org/package=meta},
}
citation(package = "ggplot2", lib.loc = NULL, auto = NULL)
To cite ggplot2 in publications, please use:
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
A BibTeX entry for LaTeX users is
@Book{,
author = {Hadley Wickham},
title = {ggplot2: Elegant Graphics for Data Analysis},
publisher = {Springer-Verlag New York},
year = {2009},
isbn = {978-0-387-98140-6},
url = {http://ggplot2.org},
}
citation(package = "metafor", lib.loc = NULL, auto = NULL)
To cite the metafor package in publications, please use:
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software,
36(3), 1-48. URL: http://www.jstatsoft.org/v36/i03/
A BibTeX entry for LaTeX users is
@Article{,
title = {Conducting meta-analyses in {R} with the {metafor} package},
author = {Wolfgang Viechtbauer},
journal = {Journal of Statistical Software},
year = {2010},
volume = {36},
number = {3},
pages = {1--48},
url = {http://www.jstatsoft.org/v36/i03/},
}
str(df)
'data.frame': 32 obs. of 19 variables:
$ Tipo : Factor w/ 2 levels "binaria","continua": 1 1 1 1 1 1 1 1 1 1 ...
$ Resultado : Factor w/ 9 levels "Ancho de corona",..: 8 8 8 8 8 8 6 6 6 6 ...
$ Autor : Factor w/ 10 levels "Alqerban 2011 A",..: 2 4 9 10 5 6 2 4 9 10 ...
$ Año : int 2011 2011 2012 2012 2013 2015 2011 2011 2012 2012 ...
$ n..evaluados : int 30 30 73 754 39 406 30 30 73 754 ...
$ n..impactados: int 30 30 73 754 39 406 30 30 73 754 ...
$ Si : int 9 9 22 324 4 124 14 13 NA 317 ...
$ No : int 21 21 51 430 35 282 17 17 NA 437 ...
$ Si.CBCT : int NA NA NA NA 7 NA 12 10 20 308 ...
$ No.CBCT : int NA NA NA NA 32 NA 18 20 53 446 ...
$ n.Acc : int NA NA NA NA NA NA NA NA NA NA ...
$ Promedio.Acc : num NA NA NA NA NA NA NA NA NA NA ...
$ DE.Acc : num NA NA NA NA NA NA NA NA NA NA ...
$ n.Scan : int NA NA NA NA NA NA NA NA NA NA ...
$ Promedio.Scan: num NA NA NA NA NA NA NA NA NA NA ...
$ DE.Scan : num NA NA NA NA NA NA NA NA NA NA ...
$ n.pano : int NA NA NA NA NA NA NA NA NA NA ...
$ promedio.pano: num NA NA NA NA NA NA NA NA NA NA ...
$ DS.pano : num NA NA NA NA NA NA NA NA NA NA ...
_s_ummary _m_easure = OR with _I_nverse variance method ### MA Rebsorción radicular IL #### Datos Rebsorción radicular IL
m1
OR 95%-CI z p-value
0.5224 [0.1397; 1.9532] -0.96 0.3346
Details:
- Inverse variance method
m1
OR 95%-CI %W(fixed) %W(random)
1 1.2353 [0.4469; 3.4148] 3.6 3.6
2 1.5294 [0.5364; 4.3605] 3.4 3.4
3 1.0504 [0.8558; 1.2893] 88.6 88.6
4 1.1161 [0.4453; 2.7972] 4.4 4.4
Number of studies combined: k = 4
OR 95%-CI z p-value
Fixed effect model 1.073 [0.8847; 1.3012] 0.72 0.4742
Random effects model 1.073 [0.8847; 1.3012] 0.72 0.4742
Quantifying heterogeneity:
tau^2 = 0; H = 1.00 [1.00; 1.11]; I^2 = 0.0% [0.0%; 18.2%]
Test of heterogeneity:
Q d.f. p-value
0.56 3 0.9051
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
m1
OR 95%-CI %W(fixed) %W(random)
1 0.3750 [0.1182; 1.1902] 3.2 10.8
2 0.3269 [0.1035; 1.0322] 3.2 10.9
3 0.5443 [0.4385; 0.6757] 89.9 65.9
4 1.3362 [0.4636; 3.8515] 3.8 12.5
Number of studies combined: k = 4
OR 95%-CI z p-value
Fixed effect model 0.5475 [0.4460; 0.6720] -5.76 < 0.0001
Random effects model 0.5536 [0.3684; 0.8317] -2.85 0.0044
Quantifying heterogeneity:
tau^2 = 0.0533; H = 1.14 [1.00; 2.92]; I^2 = 23.4% [0.0%; 88.3%]
Test of heterogeneity:
Q d.f. p-value
3.92 3 0.2706
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
m1
OR 95%-CI %W(fixed) %W(random)
1 1.9023 [0.6171; 5.8635] 3.7 18.1
2 1.9023 [0.6171; 5.8635] 3.7 18.1
3 0.7182 [0.5714; 0.9027] 89.9 49.1
4 0.5224 [0.1397; 1.9532] 2.7 14.6
Number of studies combined: k = 4
OR 95%-CI z p-value
Fixed effect model 0.7654 [0.6162; 0.9507] -2.42 0.0156
Random effects model 0.9763 [0.5406; 1.7633] -0.08 0.9367
Quantifying heterogeneity:
tau^2 = 0.1715; H = 1.37 [1.00; 2.38]; I^2 = 46.9% [0.0%; 82.4%]
Test of heterogeneity:
Q d.f. p-value
5.65 3 0.1302
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
m1
OR 95%-CI %W(fixed) %W(random)
1 0.5224 [0.1397; 1.9532] 41.3 37.4
2 0.3056 [0.0723; 1.2914] 34.6 34.4
3 2.8000 [0.4983; 15.7344] 24.1 28.3
Number of studies combined: k = 3
OR 95%-CI z p-value
Fixed effect model 0.6505 [0.2787; 1.5183] -0.99 0.3201
Random effects model 0.6983 [0.2106; 2.3152] -0.59 0.5571
Quantifying heterogeneity:
tau^2 = 0.5477; H = 1.40 [1.00; 2.59]; I^2 = 48.8% [0.0%; 85.1%]
Test of heterogeneity:
Q d.f. p-value
3.91 2 0.1417
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2