statcheck是R的套件之一,用來快速檢查paper中的統計結果是否有錯誤的地方
這個套件可以自動抽取檔案中的統計結果,並重新計算。
藉由比對paper中的統計結果和經過statcheck重新計算的結果,
檢查是否有不一致的地方。
因為statcheck是抽取檔案中的文字後加以比對,
因此轉換過程也可能會發生錯誤,作者建議應該對有問題的地方進行人工檢查。
以下簡單示範如何使用statcheck package快速檢查位於我電腦中的“Voluntary Attention Modulates Processing of Eye-Specific Visual Information”這篇paper中統計結果的過程
setwd("~/R/statcheck") # switch directory to the file directory
library(statcheck) # load statcheck library
statcheck package可以讀取資料夾內所有pdf和html檔案並比對結果,但根據作者的說明,轉換pdf檔時比較容易發生問題,所以這次用html檔案做說明
# use checkHTML to get comparsion results
checkResults <- checkHTML("/Users/CSE/R/statcheck/Voluntary Attention Modulates Processing of Eye-Specific Visual Information.htm")
# to load get results from all html files in the directory, use checkHTMLdir function
summary(checkResults) # show summary of comparison results
## Source pValues Errors DecisionErrors
## 1 1 12 1 0
## 2 Total 12 1 0
source: 讀取了多少檔案
pValues: 比對幾個p-values
Errors: 不一致的結果的數目
DecisionErrors:影響推論的不一致結果數目
從比對結果可以看出有一個Error,可以呼叫詳細結果查看細節。
checkResults
## Source
## 1 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 2 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 3 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 4 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 5 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 6 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 7 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 8 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 9 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 10 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 11 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 12 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## Statistic df1 df2 Test.Comparison Value Reported.Comparison
## 1 t NA 5 = 3.96 <
## 2 F 2 8 = 15.10 <
## 3 F 2 8 = 21.20 <
## 4 t NA 4 = 5.91 <
## 5 t NA 4 = -5.48 <
## 6 t NA 4 = 3.85 <
## 7 t NA 4 = -0.56 >
## 8 t NA 4 = 1.68 <
## 9 t NA 4 = 3.21 <
## 10 F 2 10 = 10.17 <
## 11 t NA 5 = 3.49 <
## 12 t NA 5 = 2.02 <
## Reported.P.Value Computed Raw Error
## 1 0.050 0.0107428441 t(5) = 3.96, p < .05 FALSE
## 2 0.005 0.0019235634 F(2, 8) = 15.1, p < .005 FALSE
## 3 0.001 0.0006348013 F(2, 8) = 21.2, p < .001 FALSE
## 4 0.010 0.0041033902 t(4) = 5.91, p < .01 FALSE
## 5 0.010 0.0053986115 t(4) = -5.48, p < .01 FALSE
## 6 0.050 0.0183025983 t(4) = 3.85, p < .05 FALSE
## 7 0.500 0.6053561995 t(4) = -0.56, p > .5 FALSE
## 8 0.100 0.1682548864 t(4) = 1.68, p < .1 TRUE
## 9 0.050 0.0325889218 t(4) = 3.21, p < .05 FALSE
## 10 0.010 0.0038897538 F(2, 10) = 10.17, p < .01 FALSE
## 11 0.050 0.0174704493 t(5) = 3.49, p < .05 FALSE
## 12 0.100 0.0993702870 t(5) = 2.02, p < .1 FALSE
## DecisionError OneTail OneTailedInTxt APAfactor
## 1 FALSE FALSE FALSE 0.75
## 2 FALSE FALSE FALSE 0.75
## 3 FALSE FALSE FALSE 0.75
## 4 FALSE FALSE FALSE 0.75
## 5 FALSE FALSE FALSE 0.75
## 6 FALSE FALSE FALSE 0.75
## 7 FALSE FALSE FALSE 0.75
## 8 FALSE FALSE FALSE 0.75
## 9 FALSE FALSE FALSE 0.75
## 10 FALSE FALSE FALSE 0.75
## 11 FALSE FALSE FALSE 0.75
## 12 FALSE FALSE FALSE 0.75
Error = TRUE;有不一致的結果
表示第8個統計結果可能有誤
可以先比對“computed”和“Reported.P.Value”
computed: statcheck計算出的結果
Reported.P.Value: paper中的結果
Raw: 從文檔中抽出的文字片段
這裡的Raw檔是 “t(4) = 1.68, p < .1”, p-values<.1
而statcheck計算出的p-value=0.1682548864,所以不一致。
但因為預設的alpha為.05,所以DecisionErrors還是0個
但如果把alpha level改成.1,這個error就會被判斷成DecisionErrors
# reset alpha to .1
checkResults2 <- checkHTML("/Users/CSE/R/statcheck/Voluntary Attention Modulates Processing of Eye-Specific Visual Information.htm", alpha = 0.1)
##
|
| | 0%
|
|=================================================================| 100%
summary(checkResults2)
## Source pValues Errors DecisionErrors
## 1 1 12 1 1
## 2 Total 12 1 1
checkResults2
## Source
## 1 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 2 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 3 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 4 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 5 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 6 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 7 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 8 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 9 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 10 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 11 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## 12 Voluntary Attention Modulates Processing of Eye-Specific Visual Information
## Statistic df1 df2 Test.Comparison Value Reported.Comparison
## 1 t NA 5 = 3.96 <
## 2 F 2 8 = 15.10 <
## 3 F 2 8 = 21.20 <
## 4 t NA 4 = 5.91 <
## 5 t NA 4 = -5.48 <
## 6 t NA 4 = 3.85 <
## 7 t NA 4 = -0.56 >
## 8 t NA 4 = 1.68 <
## 9 t NA 4 = 3.21 <
## 10 F 2 10 = 10.17 <
## 11 t NA 5 = 3.49 <
## 12 t NA 5 = 2.02 <
## Reported.P.Value Computed Raw Error
## 1 0.050 0.0107428441 t(5) = 3.96, p < .05 FALSE
## 2 0.005 0.0019235634 F(2, 8) = 15.1, p < .005 FALSE
## 3 0.001 0.0006348013 F(2, 8) = 21.2, p < .001 FALSE
## 4 0.010 0.0041033902 t(4) = 5.91, p < .01 FALSE
## 5 0.010 0.0053986115 t(4) = -5.48, p < .01 FALSE
## 6 0.050 0.0183025983 t(4) = 3.85, p < .05 FALSE
## 7 0.500 0.6053561995 t(4) = -0.56, p > .5 FALSE
## 8 0.100 0.1682548864 t(4) = 1.68, p < .1 TRUE
## 9 0.050 0.0325889218 t(4) = 3.21, p < .05 FALSE
## 10 0.010 0.0038897538 F(2, 10) = 10.17, p < .01 FALSE
## 11 0.050 0.0174704493 t(5) = 3.49, p < .05 FALSE
## 12 0.100 0.0993702870 t(5) = 2.02, p < .1 FALSE
## DecisionError OneTail OneTailedInTxt APAfactor
## 1 FALSE FALSE FALSE 0.75
## 2 FALSE FALSE FALSE 0.75
## 3 FALSE FALSE FALSE 0.75
## 4 FALSE FALSE FALSE 0.75
## 5 FALSE FALSE FALSE 0.75
## 6 FALSE FALSE FALSE 0.75
## 7 FALSE FALSE FALSE 0.75
## 8 TRUE FALSE FALSE 0.75
## 9 FALSE FALSE FALSE 0.75
## 10 FALSE FALSE FALSE 0.75
## 11 FALSE FALSE FALSE 0.75
## 12 FALSE FALSE FALSE 0.75