cancer = read.csv("cancer-survival.csv", header = TRUE)
str(cancer)
## 'data.frame': 64 obs. of 2 variables:
## $ Survival: int 124 42 25 45 412 51 1112 46 103 876 ...
## $ Organ : Factor w/ 5 levels "Breast","Bronchus",..: 5 5 5 5 5 5 5 5 5 5 ...
summary(cancer)
## Survival Organ
## Min. : 20.0 Breast :11
## 1st Qu.: 102.5 Bronchus:17
## Median : 265.5 Colon :17
## Mean : 558.6 Ovary : 6
## 3rd Qu.: 721.0 Stomach :13
## Max. :3808.0
levels(cancer$Organ)
## [1] "Breast" "Bronchus" "Colon" "Ovary" "Stomach"
boxplot(cancer$Survival~ cancer$Organ, xlab="Organs with Cancer", ylab="Survival Times")
title("Survival Times from Cancer Types with Ascorbate Treatment")
means1 <- by(cancer$Survival, cancer$Organ, mean)
points(1:5, means1, pch = 23, cex = 1, bg = "blue")
text(1:5 - 0.1, means1,labels = format(means1, format = "f", digits = 0),pos = 3, cex = 0.9, col = "blue")

round(means1, digits = 2)
## cancer$Organ: Breast
## [1] 1395.91
## --------------------------------------------------------
## cancer$Organ: Bronchus
## [1] 211.59
## --------------------------------------------------------
## cancer$Organ: Colon
## [1] 457.41
## --------------------------------------------------------
## cancer$Organ: Ovary
## [1] 884.33
## --------------------------------------------------------
## cancer$Organ: Stomach
## [1] 286
model_1 <- aov(cancer$Survival~ cancer$Organ)
anova(model_1)
## Analysis of Variance Table
##
## Response: cancer$Survival
## Df Sum Sq Mean Sq F value Pr(>F)
## cancer$Organ 4 11535761 2883940 6.4334 0.0002295 ***
## Residuals 59 26448144 448274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1