Are Effective Managers also Family Supportive Supervisors?

Data Preparation

Package Loading

Data Summary

vars n mean sd median trimmed mad min max range skew kurtosis se
Country* 1 287 2.2090592 0.6242659 2 2.2597403 0.0000 1 3 2 -0.1793903 -0.5979669 0.0368492
AGECATE* 2 287 2.1742160 1.0466216 3 2.1471861 1.4826 1 4 3 -0.0585262 -1.6349373 0.0617801
GENDER* 3 287 1.3414634 0.4750288 1 1.3030303 0.0000 1 2 1 0.6651562 -1.5629767 0.0280401
SEX 4 287 0.3414634 0.4750288 0 0.3030303 0.0000 0 1 1 0.6651562 -1.5629767 0.0280401
POSITION* 5 287 1.4738676 0.7231294 1 1.3463203 0.0000 1 3 2 1.1688984 -0.1254913 0.0426850
YEAR 6 287 6.8710801 7.3065327 4 5.4415584 4.4478 0 38 38 1.8843478 3.5224802 0.4312910
EF.CARE1 7 287 2.9721254 0.7928373 3 3.0086580 1.4826 1 4 3 -0.3702672 -0.4139917 0.0467997
EF.LEARN 8 287 2.7735192 0.8409925 3 2.8095238 1.4826 1 4 3 -0.2942372 -0.4890392 0.0496422
EF.TRUST 9 287 2.8745645 0.8309661 3 2.9177489 1.4826 1 4 3 -0.3832902 -0.4012388 0.0490504
EF.INVOLVE 10 287 2.6829268 0.8733553 3 2.7272727 1.4826 1 4 3 -0.3784087 -0.5040578 0.0515525
EF.CARE2 11 287 2.7491289 0.8567651 3 2.8008658 1.4826 1 4 3 -0.3627065 -0.4528869 0.0505732
EF.SUPP 12 287 2.7247387 0.8388603 3 2.7532468 1.4826 1 4 3 -0.2291517 -0.5293616 0.0495164
FSSB.IS 13 287 2.6898955 0.8180667 3 2.7099567 1.4826 1 4 3 -0.2187967 -0.4539676 0.0482890
FSSB.ES 14 287 2.7630662 0.8525743 3 2.8008658 1.4826 1 4 3 -0.2722095 -0.5521557 0.0503259
FSSB.CM 15 287 2.7804878 0.8511012 3 2.8268398 1.4826 1 4 3 -0.3477726 -0.4606684 0.0502389

Analysis

Correlation

            EF.CARE1  EF.CARE2  EF.LEARN EF.INVOLVE  EF.TRUST   EF.SUPP
EF.CARE1   1.0000000 0.6485369 0.5253808  0.5325505 0.7058410 0.6350672
EF.CARE2   0.6485369 1.0000000 0.5225996  0.5755576 0.6972385 0.6236011
EF.LEARN   0.5253808 0.5225996 1.0000000  0.5635946 0.5796184 0.5556341
EF.INVOLVE 0.5325505 0.5755576 0.5635946  1.0000000 0.5857888 0.5820222
EF.TRUST   0.7058410 0.6972385 0.5796184  0.5857888 1.0000000 0.6926680
EF.SUPP    0.6350672 0.6236011 0.5556341  0.5820222 0.6926680 1.0000000
FSSB.IS    0.6550975 0.6468912 0.5734935  0.5715110 0.6266693 0.6547336
FSSB.ES    0.6781650 0.6076326 0.5637218  0.5749508 0.6883359 0.6760495
             FSSB.IS   FSSB.ES   FSSB.CM
EF.CARE1   0.6550975 0.6781650 0.5816095
EF.CARE2   0.6468912 0.6076326 0.5475686
EF.LEARN   0.5734935 0.5637218 0.5262647
EF.INVOLVE 0.5715110 0.5749508 0.5128443
EF.TRUST   0.6266693 0.6883359 0.5492550
EF.SUPP    0.6547336 0.6760495 0.5664230
FSSB.IS    1.0000000 0.6863685 0.5396655
FSSB.ES    0.6863685 1.0000000 0.5448540
 [ reached getOption("max.print") -- omitted 1 row ]
Call: mixed.cor(x = data_sel1_corr, method = "spearman")
           EF.CARE1 EF.CARE2 EF.LE EF.IN EF.TR EF.SU FSSB.I FSSB.E FSSB.C
EF.CARE1    1.00                                                         
EF.CARE2    0.73     1.00                                                
EF.LEARN   -0.17    -0.37     1.00                                       
EF.INVOLVE -0.03     0.30     0.17  1.00                                 
EF.TRUST    0.80     0.88    -0.20  0.37  1.00                           
EF.SUPP     0.63     0.55     0.05  0.45  0.68  1.00                     
FSSB.IS     0.65     0.47     0.02 -0.05  0.45  0.62  1.00               
FSSB.ES     0.82     0.55     0.23  0.28  0.67  0.80  0.78   1.00        
 [ reached getOption("max.print") -- omitted 1 row ]
           EF.CARE1 EF.CARE2 EF.LE EF.IN EF.TR EF.SU FSSB.I FSSB.E FSSB.C
EF.CARE1    1.00                                                         
EF.CARE2    0.73     1.00                                                
EF.LEARN   -0.17    -0.37     1.00                                       
EF.INVOLVE -0.03     0.30     0.17  1.00                                 
EF.TRUST    0.80     0.88    -0.20  0.37  1.00                           
EF.SUPP     0.63     0.55     0.05  0.45  0.68  1.00                     
FSSB.IS     0.65     0.47     0.02 -0.05  0.45  0.62  1.00               
FSSB.ES     0.82     0.55     0.23  0.28  0.67  0.80  0.78   1.00        
 [ reached getOption("max.print") -- omitted 1 row ]
Call:corr.test(x = data_sel1_corr, method = "spearman")
Correlation matrix 
           EF.CARE1 EF.CARE2 EF.LEARN EF.INVOLVE EF.TRUST EF.SUPP FSSB.IS
EF.CARE1       1.00     0.73    -0.17      -0.03     0.80    0.63    0.65
EF.CARE2       0.73     1.00    -0.37       0.30     0.88    0.55    0.47
EF.LEARN      -0.17    -0.37     1.00       0.17    -0.20    0.05    0.02
EF.INVOLVE    -0.03     0.30     0.17       1.00     0.37    0.45   -0.05
EF.TRUST       0.80     0.88    -0.20       0.37     1.00    0.68    0.45
EF.SUPP        0.63     0.55     0.05       0.45     0.68    1.00    0.62
FSSB.IS        0.65     0.47     0.02      -0.05     0.45    0.62    1.00
FSSB.ES        0.82     0.55     0.23       0.28     0.67    0.80    0.78
           FSSB.ES FSSB.CM
EF.CARE1      0.82    0.42
EF.CARE2      0.55    0.27
EF.LEARN      0.23   -0.55
EF.INVOLVE    0.28   -0.43
EF.TRUST      0.67    0.30
EF.SUPP       0.80    0.25
FSSB.IS       0.78   -0.03
FSSB.ES       1.00   -0.02
 [ reached getOption("max.print") -- omitted 1 row ]
Sample Size 
[1] 9
Probability values (Entries above the diagonal are adjusted for multiple tests.) 
           EF.CARE1 EF.CARE2 EF.LEARN EF.INVOLVE EF.TRUST EF.SUPP FSSB.IS
EF.CARE1       0.00     0.76     1.00       1.00     0.33    1.00    1.00
EF.CARE2       0.02     0.00     1.00       1.00     0.06    1.00    1.00
EF.LEARN       0.67     0.33     0.00       1.00     1.00    1.00    1.00
EF.INVOLVE     0.93     0.43     0.67       0.00     1.00    1.00    1.00
EF.TRUST       0.01     0.00     0.61       0.33     0.00    1.00    1.00
EF.SUPP        0.07     0.12     0.90       0.22     0.04    0.00    1.00
FSSB.IS        0.06     0.21     0.97       0.90     0.22    0.08    0.00
FSSB.ES        0.01     0.12     0.55       0.46     0.05    0.01    0.01
           FSSB.ES FSSB.CM
EF.CARE1      0.25       1
EF.CARE2      1.00       1
EF.LEARN      1.00       1
EF.INVOLVE    1.00       1
EF.TRUST      1.00       1
EF.SUPP       0.33       1
FSSB.IS       0.40       1
FSSB.ES       0.00       1
 [ reached getOption("max.print") -- omitted 1 row ]

 To see confidence intervals of the correlations, print with the short=FALSE option

Covariance

            EF.CARE1  EF.CARE2  EF.LEARN EF.INVOLVE  EF.TRUST   EF.SUPP
EF.CARE1   0.6285909 0.4405351 0.3503082  0.3687532 0.4650228 0.4223703
EF.CARE2   0.4405351 0.7340464 0.3765503  0.4306669 0.4963939 0.4481860
EF.LEARN   0.3503082 0.3765503 0.7072683  0.4139519 0.4050584 0.3919861
EF.INVOLVE 0.3687532 0.4306669 0.4139519  0.7627494 0.4251237 0.4264029
EF.TRUST   0.4650228 0.4963939 0.4050584  0.4251237 0.6905046 0.4828342
EF.SUPP    0.4223703 0.4481860 0.3919861  0.4264029 0.4828342 0.7036866
FSSB.IS    0.4248922 0.4534003 0.3945567  0.4083234 0.4260008 0.4493068
FSSB.ES    0.4584074 0.4438488 0.4041934  0.4281085 0.4876587 0.4835043
             FSSB.IS   FSSB.ES   FSSB.CM
EF.CARE1   0.4248922 0.4584074 0.3924612
EF.CARE2   0.4534003 0.4438488 0.3992836
EF.LEARN   0.3945567 0.4041934 0.3766843
EF.INVOLVE 0.4083234 0.4281085 0.3812042
EF.TRUST   0.4260008 0.4876587 0.3884530
EF.SUPP    0.4493068 0.4835043 0.4044005
FSSB.IS    0.6692332 0.4787164 0.3757462
FSSB.ES    0.4787164 0.7268829 0.3953607
 [ reached getOption("max.print") -- omitted 1 row ]

Descriptive

Normality Test

           Beta-hat      kappa        p-val
Skewness   7.093847 339.322351 3.874678e-14
Kurtosis 112.111374   7.892718 2.886580e-15

    Bartlett test of homogeneity of variances

data:  EF.CARE1 by EF.CARE2
Bartlett's K-squared = 9.3219, df = 3, p-value = 0.0253

    Bartlett test of homogeneity of variances

data:  EF.CARE1 by EF.LEARN
Bartlett's K-squared = 7.4673, df = 3, p-value = 0.0584

    Fligner-Killeen test of homogeneity of variances

data:  EF.CARE1 by EF.CARE2
Fligner-Killeen:med chi-squared = 10.291, df = 3, p-value =
0.01625

    Fligner-Killeen test of homogeneity of variances

data:  EF.CARE1 by EF.LEARN
Fligner-Killeen:med chi-squared = 9.4009, df = 3, p-value =
0.02441

PCA

Importance of components:
                          Comp.1     Comp.2     Comp.3     Comp.4
Standard deviation     2.4111744 0.75768556 0.71428935 0.66982715
Proportion of Variance 0.6459735 0.06378749 0.05668992 0.04985205
Cumulative Proportion  0.6459735 0.70976103 0.76645095 0.81630299
                           Comp.5    Comp.6     Comp.7     Comp.8
Standard deviation     0.63509403 0.6123425 0.59082449 0.53596926
Proportion of Variance 0.04481605 0.0416626 0.03878595 0.03191812
Cumulative Proportion  0.86111904 0.9027816 0.94156759 0.97348571
                           Comp.9
Standard deviation     0.48849630
Proportion of Variance 0.02651429
Cumulative Proportion  1.00000000

Loadings:
           Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
EF.CARE1   -0.344  0.346 -0.176         0.113        -0.577 -0.542  0.289
EF.CARE2   -0.338  0.229         0.384  0.553  0.316  0.292  0.270  0.348
EF.LEARN   -0.308 -0.641  0.162 -0.544  0.391                       0.131
EF.INVOLVE -0.314 -0.458  0.371  0.637 -0.265        -0.261              
EF.TRUST   -0.353  0.229                0.331 -0.440         0.102 -0.703
EF.SUPP    -0.345  0.123               -0.317 -0.442  0.636 -0.317  0.245
FSSB.IS    -0.343  0.125  0.146 -0.220 -0.273  0.707  0.176 -0.188 -0.395
FSSB.ES    -0.347  0.197  0.130 -0.274 -0.394        -0.268  0.678  0.232
 [ reached getOption("max.print") -- omitted 1 row ]

               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000
Proportion Var  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
Cumulative Var  0.111  0.222  0.333  0.444  0.556  0.667  0.778  0.889
               Comp.9
SS loadings     1.000
Proportion Var  0.111
Cumulative Var  1.000

             Comp.1      Comp.2        Comp.3        Comp.4       Comp.5
  [1,] -0.319737592 -1.04638486 -1.0921219775 -2.910773e-01 -1.328182367
  [2,] -2.376975205  0.25312096  0.4757499354  8.073743e-01 -0.103913386
  [3,] -0.780687170 -0.15850426  0.0825359200  5.952987e-02 -0.126273726
  [4,]  0.024072839 -0.25221455 -0.5407824788  5.915276e-01  1.192722984
  [5,] -3.222116466  0.86181836 -0.6778455516  6.754802e-03  0.109244939
  [6,] -0.780687170 -0.15850426  0.0825359200  5.952987e-02 -0.126273726
  [7,] -0.421053675  0.18647818  1.1042760769 -8.925572e-02  0.029153571
  [8,]  2.012368421 -0.82785974  1.9741057154 -2.530500e-01 -0.162877968
             Comp.6        Comp.7       Comp.8       Comp.9
  [1,]  0.313341500 -0.0398415026 -0.207614694  0.305798308
  [2,]  0.342734688 -0.8265258234  0.391269657  1.038271970
  [3,]  0.117343951  0.1765640221  0.076414191  0.003094703
  [4,] -0.131587117 -1.2133403753 -0.795752930  0.286470236
  [5,]  0.733214806 -0.3327270253  0.551200926 -0.421124003
  [6,]  0.117343951  0.1765640221  0.076414191  0.003094703
  [7,]  0.082937092  0.1250896831 -0.078038617  0.141097727
  [8,]  0.861397576  0.0905285255 -0.404766337 -0.211085117
 [ reached getOption("max.print") -- omitted 279 rows ]

Latent Class Model

Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1) Pr(2)  Pr(3)  Pr(4)
class 1:  0.0348 0.223 0.4774 0.2648

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0906 0.2509 0.4774 0.1812

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0732 0.2718 0.4634 0.1916

$EF.INVOLVE
          Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.115 0.2439 0.4843 0.1568

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3) Pr(4)
class 1:  0.0592 0.2369 0.4739  0.23

$EF.SUPP
           Pr(1)  Pr(2) Pr(3)  Pr(4)
class 1:  0.0767 0.2962 0.453 0.1742

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0767 0.3066 0.4669 0.1498

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0767 0.2787 0.4495 0.1951

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0801 0.2544 0.4704 0.1951

Estimated class population shares 
 1 
 
Predicted class memberships (by modal posterior prob.) 
 1 
 
========================================================= 
Fit for 1 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 27 
residual degrees of freedom: 260 
maximum log-likelihood: -3131.752 
 
AIC(1): 6317.504
BIC(1): 6416.31
G^2(1): 3239.88 (Likelihood ratio/deviance statistic) 
X^2(1): 123398324 (Chi-square goodness of fit) 
 
Model 1: llik = -2562.537 ... best llik = -2562.537
Model 2: llik = -2562.537 ... best llik = -2562.537
Model 3: llik = -2562.537 ... best llik = -2562.537
Model 4: llik = -2562.537 ... best llik = -2562.537
Model 5: llik = -2562.537 ... best llik = -2562.537
Model 6: llik = -2562.537 ... best llik = -2562.537
Model 7: llik = -2562.537 ... best llik = -2562.537
Model 8: llik = -2562.537 ... best llik = -2562.537
Model 9: llik = -2562.537 ... best llik = -2562.537
Model 10: llik = -2562.537 ... best llik = -2562.537
Model 11: llik = -2562.537 ... best llik = -2562.537
Model 12: llik = -2562.537 ... best llik = -2562.537
Model 13: llik = -2562.537 ... best llik = -2562.537
Model 14: llik = -2568.329 ... best llik = -2562.537
Model 15: llik = -2562.537 ... best llik = -2562.537
Model 16: llik = -2562.537 ... best llik = -2562.537
Model 17: llik = -2562.537 ... best llik = -2562.537
Model 18: llik = -2568.329 ... best llik = -2562.537
Model 19: llik = -2562.537 ... best llik = -2562.537
Model 20: llik = -2562.537 ... best llik = -2562.537
Model 21: llik = -2562.537 ... best llik = -2562.537
Model 22: llik = -2562.537 ... best llik = -2562.537
Model 23: llik = -2562.537 ... best llik = -2562.537
Model 24: llik = -2568.329 ... best llik = -2562.537
Model 25: llik = -2562.537 ... best llik = -2562.537
Model 26: llik = -2568.329 ... best llik = -2562.537
Model 27: llik = -2562.537 ... best llik = -2562.537
Model 28: llik = -2562.537 ... best llik = -2562.537
Model 29: llik = -2562.537 ... best llik = -2562.537
Model 30: llik = -2562.537 ... best llik = -2562.537
Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0082 0.5204 0.4715
class 2:  0.0733 0.4603 0.4298 0.0365

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0063 0.0382 0.6296 0.3259
class 2:  0.1837 0.4858 0.3092 0.0213

$EF.LEARN
          Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.000 0.0972 0.5445 0.3584
class 2:  0.154 0.4647 0.3739 0.0074

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0115 0.0899 0.5999 0.2987
class 2:  0.2293 0.4141 0.3566 0.0000

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0223 0.5473 0.4304
class 2:  0.1247 0.4740 0.3927 0.0086

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0385 0.6398 0.3217
class 2:  0.1613 0.5809 0.2466 0.0112

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0349 0.7079 0.2572
class 2:  0.1613 0.6068 0.2006 0.0312

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0240 0.6042 0.3717
class 2:  0.1613 0.5602 0.2785 0.0000

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0066 0.0722 0.5494 0.3717
class 2:  0.1613 0.4555 0.3831 0.0000

Estimated class population shares 
 0.5249 0.4751 
 
Predicted class memberships (by modal posterior prob.) 
 0.5226 0.4774 
 
========================================================= 
Fit for 2 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 55 
residual degrees of freedom: 232 
maximum log-likelihood: -2562.537 
 
AIC(2): 5235.075
BIC(2): 5436.346
G^2(2): 2101.451 (Likelihood ratio/deviance statistic) 
X^2(2): 613805.7 (Chi-square goodness of fit) 
 
Model 1: llik = -2377.346 ... best llik = -2377.346
Model 2: llik = -2377.346 ... best llik = -2377.346
Model 3: llik = -2377.346 ... best llik = -2377.346
Model 4: llik = -2377.346 ... best llik = -2377.346
Model 5: llik = -2377.346 ... best llik = -2377.346
Model 6: llik = -2377.346 ... best llik = -2377.346
Model 7: llik = -2377.346 ... best llik = -2377.346
Model 8: llik = -2377.346 ... best llik = -2377.346
Model 9: llik = -2377.346 ... best llik = -2377.346
Model 10: llik = -2377.346 ... best llik = -2377.346
Model 11: llik = -2377.346 ... best llik = -2377.346
Model 12: llik = -2377.346 ... best llik = -2377.346
Model 13: llik = -2377.346 ... best llik = -2377.346
Model 14: llik = -2377.346 ... best llik = -2377.346
Model 15: llik = -2377.346 ... best llik = -2377.346
Model 16: llik = -2377.346 ... best llik = -2377.346
Model 17: llik = -2377.346 ... best llik = -2377.346
Model 18: llik = -2377.346 ... best llik = -2377.346
Model 19: llik = -2377.346 ... best llik = -2377.346
Model 20: llik = -2377.346 ... best llik = -2377.346
Model 21: llik = -2377.346 ... best llik = -2377.346
Model 22: llik = -2377.346 ... best llik = -2377.346
Model 23: llik = -2377.346 ... best llik = -2377.346
Model 24: llik = -2377.346 ... best llik = -2377.346
Model 25: llik = -2377.346 ... best llik = -2377.346
Model 26: llik = -2377.346 ... best llik = -2377.346
Model 27: llik = -2377.346 ... best llik = -2377.346
Model 28: llik = -2377.346 ... best llik = -2377.346
Model 29: llik = -2377.346 ... best llik = -2377.346
Model 30: llik = -2377.346 ... best llik = -2377.346
Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0311 0.8081 0.1608
class 2:  0.0916 0.5521 0.3280 0.0283
class 3:  0.0000 0.0000 0.0723 0.9277

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0249 0.0987 0.7741 0.1023
class 2:  0.2108 0.5510 0.2281 0.0101
class 3:  0.0000 0.0000 0.3316 0.6684

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0085 0.1880 0.6442 0.1593
class 2:  0.1831 0.4896 0.3182 0.0092
class 3:  0.0000 0.0343 0.3621 0.6035

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0199 0.1837 0.6912 0.1052
class 2:  0.2805 0.4296 0.2899 0.0000
class 3:  0.0000 0.0181 0.4216 0.5602

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0654 0.7972 0.1375
class 2:  0.1557 0.5511 0.2932 0.0000
class 3:  0.0000 0.0000 0.1433 0.8567

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.1141 0.7983 0.0877
class 2:  0.2015 0.6532 0.1452 0.0000
class 3:  0.0000 0.0000 0.3168 0.6832

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.1825 0.7834 0.0341
class 2:  0.2015 0.6054 0.1614 0.0316
class 3:  0.0000 0.0000 0.3862 0.6138

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.1370 0.7548 0.1082
class 2:  0.2015 0.5822 0.2163 0.0000
class 3:  0.0000 0.0000 0.2557 0.7443

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.1542 0.6903 0.1555
class 2:  0.2015 0.4868 0.3116 0.0000
class 3:  0.0173 0.0233 0.3132 0.6462

Estimated class population shares 
 0.4184 0.3803 0.2013 
 
Predicted class memberships (by modal posterior prob.) 
 0.4146 0.3868 0.1986 
 
========================================================= 
Fit for 3 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 83 
residual degrees of freedom: 204 
maximum log-likelihood: -2377.346 
 
AIC(3): 4920.691
BIC(3): 5224.428
G^2(3): 1731.067 (Likelihood ratio/deviance statistic) 
X^2(3): 241884.2 (Chi-square goodness of fit) 
 
Model 1: llik = -2294.161 ... best llik = -2294.161
Model 2: llik = -2295.032 ... best llik = -2294.161
Model 3: llik = -2307.302 ... best llik = -2294.161
Model 4: llik = -2295.032 ... best llik = -2294.161
Model 5: llik = -2295.692 ... best llik = -2294.161
Model 6: llik = -2298.128 ... best llik = -2294.161
Model 7: llik = -2297.101 ... best llik = -2294.161
Model 8: llik = -2294.461 ... best llik = -2294.161
Model 9: llik = -2294.161 ... best llik = -2294.161
Model 10: llik = -2295.032 ... best llik = -2294.161
Model 11: llik = -2294.485 ... best llik = -2294.161
Model 12: llik = -2297.101 ... best llik = -2294.161
Model 13: llik = -2294.485 ... best llik = -2294.161
Model 14: llik = -2295.032 ... best llik = -2294.161
Model 15: llik = -2295.032 ... best llik = -2294.161
Model 16: llik = -2295.032 ... best llik = -2294.161
Model 17: llik = -2307.302 ... best llik = -2294.161
Model 18: llik = -2295.763 ... best llik = -2294.161
Model 19: llik = -2370.156 ... best llik = -2294.161
Model 20: llik = -2295.032 ... best llik = -2294.161
Model 21: llik = -2295.032 ... best llik = -2294.161
Model 22: llik = -2318.301 ... best llik = -2294.161
Model 23: llik = -2294.161 ... best llik = -2294.161
Model 24: llik = -2295.032 ... best llik = -2294.161
Model 25: llik = -2295.067 ... best llik = -2294.161
Model 26: llik = -2295.032 ... best llik = -2294.161
Model 27: llik = -2295.032 ... best llik = -2294.161
Model 28: llik = -2294.161 ... best llik = -2294.161
Model 29: llik = -2295.853 ... best llik = -2294.161
Model 30: llik = -2295.032 ... best llik = -2294.161
Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.5031 0.4535 0.0434
class 2:  0.3529 0.4625 0.1846 0.0000
class 3:  0.0000 0.0189 0.7830 0.1981
class 4:  0.0000 0.0000 0.0632 0.9368

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0798 0.5339 0.3601 0.0262
class 2:  0.5655 0.4047 0.0298 0.0000
class 3:  0.0207 0.0806 0.7825 0.1162
class 4:  0.0000 0.0000 0.3140 0.6860

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0920 0.4859 0.4221 0.0000
class 2:  0.3898 0.4454 0.1295 0.0353
class 3:  0.0095 0.1521 0.6456 0.1928
class 4:  0.0000 0.0337 0.3491 0.6172

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.1242 0.4777 0.3980 0.0000
class 2:  0.6736 0.2495 0.0769 0.0000
class 3:  0.0172 0.1444 0.7105 0.1280
class 4:  0.0000 0.0184 0.4020 0.5797

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0154 0.5598 0.4240 0.0008
class 2:  0.5472 0.3031 0.1497 0.0000
class 3:  0.0000 0.0469 0.7816 0.1716
class 4:  0.0000 0.0000 0.1191 0.8809

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0812 0.6646 0.2542 0.0000
class 2:  0.4982 0.4509 0.0509 0.0000
class 3:  0.0000 0.0713 0.8212 0.1075
class 4:  0.0000 0.0000 0.2865 0.7135

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0512 0.6942 0.2115 0.0431
class 2:  0.6010 0.3990 0.0000 0.0000
class 3:  0.0000 0.0862 0.8801 0.0337
class 4:  0.0000 0.0000 0.3466 0.6534

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0514 0.6517 0.2969 0.0000
class 2:  0.6003 0.3304 0.0692 0.0000
class 3:  0.0000 0.0683 0.7977 0.1341
class 4:  0.0000 0.0000 0.2283 0.7717

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.1314 0.4387 0.4299 0.0000
class 2:  0.3262 0.5547 0.1190 0.0000
class 3:  0.0000 0.1254 0.6833 0.1913
class 4:  0.0186 0.0217 0.3024 0.6573

Estimated class population shares 
 0.3383 0.0987 0.3753 0.1876 
 
Predicted class memberships (by modal posterior prob.) 
 0.338 0.0976 0.3728 0.1916 
 
========================================================= 
Fit for 4 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 111 
residual degrees of freedom: 176 
maximum log-likelihood: -2294.161 
 
AIC(4): 4810.322
BIC(4): 5216.525
G^2(4): 1564.698 (Likelihood ratio/deviance statistic) 
X^2(4): 118814 (Chi-square goodness of fit) 
 
Model 1: llik = -2252.947 ... best llik = -2252.947
Model 2: llik = -2269.295 ... best llik = -2252.947
Model 3: llik = -2255.204 ... best llik = -2252.947
Model 4: llik = -2262.421 ... best llik = -2252.947
Model 5: llik = -2253.062 ... best llik = -2252.947
Model 6: llik = -2281.306 ... best llik = -2252.947
Model 7: llik = -2276.786 ... best llik = -2252.947
Model 8: llik = -2273.137 ... best llik = -2252.947
Model 9: llik = -2252.947 ... best llik = -2252.947
Model 10: llik = -2272.954 ... best llik = -2252.947
Model 11: llik = -2256.082 ... best llik = -2252.947
Model 12: llik = -2252.947 ... best llik = -2252.947
Model 13: llik = -2268.529 ... best llik = -2252.947
Model 14: llik = -2268.641 ... best llik = -2252.947
Model 15: llik = -2257.654 ... best llik = -2252.947
Model 16: llik = -2269.295 ... best llik = -2252.947
Model 17: llik = -2276.805 ... best llik = -2252.947
Model 18: llik = -2253.773 ... best llik = -2252.947
Model 19: llik = -2272.407 ... best llik = -2252.947
Model 20: llik = -2252.947 ... best llik = -2252.947
Model 21: llik = -2267.069 ... best llik = -2252.947
Model 22: llik = -2269.295 ... best llik = -2252.947
Model 23: llik = -2268.641 ... best llik = -2252.947
Model 24: llik = -2256.621 ... best llik = -2252.947
Model 25: llik = -2254.118 ... best llik = -2252.947
Model 26: llik = -2281.672 ... best llik = -2252.947
Model 27: llik = -2271.993 ... best llik = -2252.947
Model 28: llik = -2257.042 ... best llik = -2252.947
Model 29: llik = -2277.993 ... best llik = -2252.947
Model 30: llik = -2269.295 ... best llik = -2252.947
Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.5799 0.3485 0.0717 0.0000
class 2:  0.0000 0.0116 0.7673 0.2211
class 3:  0.0000 0.0000 0.0602 0.9398
class 4:  0.0000 0.2107 0.7031 0.0862
class 5:  0.0324 0.7246 0.2258 0.0172

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.8669 0.0606 0.0000 0.0725
class 2:  0.0210 0.0585 0.7827 0.1378
class 3:  0.0000 0.0000 0.3027 0.6973
class 4:  0.0421 0.2945 0.6317 0.0316
class 5:  0.1513 0.7588 0.0899 0.0000

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.5798 0.3477 0.0000 0.0725
class 2:  0.0105 0.1086 0.6572 0.2238
class 3:  0.0000 0.0350 0.3331 0.6319
class 4:  0.0000 0.4623 0.5377 0.0000
class 5:  0.1942 0.5119 0.2939 0.0000

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.6400 0.2890 0.0710 0.0000
class 2:  0.0125 0.1079 0.7293 0.1503
class 3:  0.0000 0.0187 0.3861 0.5953
class 4:  0.0563 0.4305 0.5133 0.0000
class 5:  0.3143 0.4427 0.2431 0.0000

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.8531 0.0000 0.1469 0.0000
class 2:  0.0000 0.0339 0.7794 0.1868
class 3:  0.0000 0.0000 0.0971 0.9029
class 4:  0.0000 0.3536 0.6188 0.0275
class 5:  0.0848 0.6855 0.2297 0.0000

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.6355 0.2920 0.0725 0.0000
class 2:  0.0000 0.0544 0.8269 0.1187
class 3:  0.0000 0.0000 0.2651 0.7349
class 4:  0.0636 0.3960 0.5258 0.0146
class 5:  0.1492 0.8200 0.0308 0.0000

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.7823 0.1452 0.0000 0.0725
class 2:  0.0000 0.0420 0.9264 0.0315
class 3:  0.0000 0.0000 0.3135 0.6865
class 4:  0.0000 0.6660 0.2730 0.0610
class 5:  0.1816 0.6435 0.1749 0.0000

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.7097 0.2903 0.0000 0.0000
class 2:  0.0000 0.0320 0.8039 0.1640
class 3:  0.0000 0.0000 0.2155 0.7845
class 4:  0.0316 0.5687 0.3996 0.0000
class 5:  0.1654 0.5971 0.2375 0.0000

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.5800 0.2749 0.1451 0.0000
class 2:  0.0000 0.1097 0.6604 0.2299
class 3:  0.0196 0.0224 0.2986 0.6594
class 4:  0.0642 0.3002 0.6356 0.0000
class 5:  0.1610 0.6221 0.2169 0.0000

Estimated class population shares 
 0.0481 0.3381 0.178 0.2208 0.215 
 
Predicted class memberships (by modal posterior prob.) 
 0.0488 0.3415 0.1742 0.2195 0.216 
 
========================================================= 
Fit for 5 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 139 
residual degrees of freedom: 148 
maximum log-likelihood: -2252.947 
 
AIC(5): 4783.895
BIC(5): 5292.563
G^2(5): 1482.271 (Likelihood ratio/deviance statistic) 
X^2(5): 65604.04 (Chi-square goodness of fit) 
 
Model 1: llik = -2231.675 ... best llik = -2231.675
Model 2: llik = -2229.089 ... best llik = -2229.089
Model 3: llik = -2238.935 ... best llik = -2229.089
Model 4: llik = -2237.868 ... best llik = -2229.089
Model 5: llik = -2252.464 ... best llik = -2229.089
Model 6: llik = -2240.661 ... best llik = -2229.089
Model 7: llik = -2230.174 ... best llik = -2229.089
Model 8: llik = -2238.196 ... best llik = -2229.089
Model 9: llik = -2234.28 ... best llik = -2229.089
Model 10: llik = -2241.441 ... best llik = -2229.089
Model 11: llik = -2235.046 ... best llik = -2229.089
Model 12: llik = -2238.296 ... best llik = -2229.089
Model 13: llik = -2235.612 ... best llik = -2229.089
Model 14: llik = -2235.014 ... best llik = -2229.089
Model 15: llik = -2257.342 ... best llik = -2229.089
Model 16: llik = -2231.22 ... best llik = -2229.089
Model 17: llik = -2246.802 ... best llik = -2229.089
Model 18: llik = -2253.331 ... best llik = -2229.089
Model 19: llik = -2239.615 ... best llik = -2229.089
Model 20: llik = -2242.104 ... best llik = -2229.089
Model 21: llik = -2237.103 ... best llik = -2229.089
Model 22: llik = -2235.625 ... best llik = -2229.089
Model 23: llik = -2262.894 ... best llik = -2229.089
Model 24: llik = -2236.235 ... best llik = -2229.089
Model 25: llik = -2235.879 ... best llik = -2229.089
Model 26: llik = -2247.161 ... best llik = -2229.089
Model 27: llik = -2237.268 ... best llik = -2229.089
Model 28: llik = -2231.771 ... best llik = -2229.089
Model 29: llik = -2228.957 ... best llik = -2228.957
Model 30: llik = -2247.513 ... best llik = -2228.957
Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.2197 0.6863 0.0941
class 2:  0.0326 0.7260 0.2243 0.0171
class 3:  0.0000 0.0000 0.0516 0.9484
class 4:  0.0000 0.0000 0.2061 0.7939
class 5:  0.0000 0.0141 0.8649 0.1209
class 6:  0.5799 0.3484 0.0717 0.0000

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0420 0.2886 0.6363 0.0330
class 2:  0.1519 0.7624 0.0856 0.0000
class 3:  0.0000 0.0000 0.0994 0.9006
class 4:  0.0000 0.0000 0.4900 0.5100
class 5:  0.0268 0.0832 0.8345 0.0555
class 6:  0.8669 0.0606 0.0000 0.0725

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.4796 0.5204 0.0000
class 2:  0.1947 0.5072 0.2981 0.0000
class 3:  0.0000 0.0000 0.1232 0.8768
class 4:  0.0000 0.0747 0.5396 0.3857
class 5:  0.0132 0.1121 0.6727 0.2020
class 6:  0.5798 0.3477 0.0000 0.0725

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0579 0.4473 0.4948 0.0000
class 2:  0.3155 0.4382 0.2463 0.0000
class 3:  0.0000 0.0000 0.1008 0.8992
class 4:  0.0000 0.0395 0.6323 0.3282
class 5:  0.0157 0.1217 0.7444 0.1183
class 6:  0.6399 0.2890 0.0710 0.0000

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.3574 0.6122 0.0304
class 2:  0.0852 0.6865 0.2282 0.0000
class 3:  0.0000 0.0000 0.0602 0.9398
class 4:  0.0000 0.0000 0.2389 0.7611
class 5:  0.0000 0.0488 0.8709 0.0802
class 6:  0.8531 0.0000 0.1469 0.0000

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0692 0.4088 0.5078 0.0142
class 2:  0.1463 0.8214 0.0324 0.0000
class 3:  0.0000 0.0000 0.0441 0.9559
class 4:  0.0000 0.0000 0.5758 0.4242
class 5:  0.0000 0.0682 0.8364 0.0955
class 6:  0.6355 0.2920 0.0725 0.0000

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.6866 0.2510 0.0624
class 2:  0.1826 0.6405 0.1769 0.0000
class 3:  0.0000 0.0000 0.0000 1.0000
class 4:  0.0000 0.0204 0.6736 0.3060
class 5:  0.0000 0.0437 0.9376 0.0187
class 6:  0.7823 0.1452 0.0000 0.0725

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0326 0.5781 0.3893 0.0000
class 2:  0.1662 0.5963 0.2375 0.0000
class 3:  0.0000 0.0000 0.0585 0.9415
class 4:  0.0000 0.0000 0.4737 0.5263
class 5:  0.0000 0.0485 0.8289 0.1226
class 6:  0.7097 0.2903 0.0000 0.0000

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0721 0.2940 0.6339 0.0000
class 2:  0.1559 0.6270 0.2171 0.0000
class 3:  0.0462 0.0000 0.0712 0.8826
class 4:  0.0000 0.0625 0.5022 0.4353
class 5:  0.0000 0.1203 0.6848 0.1949
class 6:  0.5800 0.2749 0.1451 0.0000

Estimated class population shares 
 0.2142 0.2139 0.0754 0.1713 0.2772 0.0481 
 
Predicted class memberships (by modal posterior prob.) 
 0.2056 0.216 0.0767 0.1812 0.2718 0.0488 
 
========================================================= 
Fit for 6 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 167 
residual degrees of freedom: 120 
maximum log-likelihood: -2228.957 
 
AIC(6): 4791.915
BIC(6): 5403.048
G^2(6): 1434.291 (Likelihood ratio/deviance statistic) 
X^2(6): 57772.07 (Chi-square goodness of fit) 
 
NULL
     Model log-likelihood resid. df      BIC     aBIC     cAIC
1 Modell 1      -3131.752       260 6416.310 5261.935 6443.310
2 Modell 2      -2562.537       232 5436.346 5261.935 5491.346
3 Modell 3      -2377.346       204 5224.428 4961.226 5307.428
4 Modell 4      -2294.161       176 5216.525 4864.532 5327.525
5 Modell 5      -2252.947       148 5292.563 4851.778 5431.563
6 Modell 6      -2228.957       120 5403.048 4873.473 5570.048
  likelihood-ratio Entropy
1         3239.880       -
2         2101.451   0.928
3         1731.067   0.942
4         1564.698     NaN
5         1482.271   0.815
6         1434.291     NaN
Model log-likelihood resid. df BIC aBIC cAIC likelihood-ratio Entropy
Modell 1 -3131.752 260 6416.310 5261.935 6443.310 3239.880
Modell 2 -2562.537 232 5436.346 5261.935 5491.346 2101.451 0.928
Modell 3 -2377.346 204 5224.428 4961.226 5307.428 1731.067 0.942
Modell 4 -2294.161 176 5216.525 4864.532 5327.525 1564.698 NaN
Modell 5 -2252.947 148 5292.563 4851.778 5431.563 1482.271 0.815
Modell 6 -2228.957 120 5403.048 4873.473 5570.048 1434.291 NaN
      Model log-likelihood resid. df Entropy        Kriterium    Guete
1  Modell 1      -3131.752       260       -              BIC 6416.310
2  Modell 2      -2562.537       232   0.928              BIC 5436.346
3  Modell 3      -2377.346       204   0.942              BIC 5224.428
4  Modell 4      -2294.161       176     NaN              BIC 5216.525
5  Modell 5      -2252.947       148   0.815              BIC 5292.563
6  Modell 6      -2228.957       120     NaN              BIC 5403.048
7  Modell 1      -3131.752       260       -             aBIC 5261.935
8  Modell 2      -2562.537       232   0.928             aBIC 5261.935
9  Modell 3      -2377.346       204   0.942             aBIC 4961.226
10 Modell 4      -2294.161       176     NaN             aBIC 4864.532
11 Modell 5      -2252.947       148   0.815             aBIC 4851.778
12 Modell 6      -2228.957       120     NaN             aBIC 4873.473
 [ reached getOption("max.print") -- omitted 12 rows ]

Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.5031 0.4535 0.0434
class 2:  0.3529 0.4625 0.1846 0.0000
class 3:  0.0000 0.0189 0.7830 0.1981
class 4:  0.0000 0.0000 0.0632 0.9368

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0798 0.5339 0.3601 0.0262
class 2:  0.5655 0.4047 0.0298 0.0000
class 3:  0.0207 0.0806 0.7825 0.1162
class 4:  0.0000 0.0000 0.3140 0.6860

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0920 0.4859 0.4221 0.0000
class 2:  0.3898 0.4454 0.1295 0.0353
class 3:  0.0095 0.1521 0.6456 0.1928
class 4:  0.0000 0.0337 0.3491 0.6172

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.1242 0.4777 0.3980 0.0000
class 2:  0.6736 0.2495 0.0769 0.0000
class 3:  0.0172 0.1444 0.7105 0.1280
class 4:  0.0000 0.0184 0.4020 0.5797

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0154 0.5598 0.4240 0.0008
class 2:  0.5472 0.3031 0.1497 0.0000
class 3:  0.0000 0.0469 0.7816 0.1716
class 4:  0.0000 0.0000 0.1191 0.8809

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0812 0.6646 0.2542 0.0000
class 2:  0.4982 0.4509 0.0509 0.0000
class 3:  0.0000 0.0713 0.8212 0.1075
class 4:  0.0000 0.0000 0.2865 0.7135

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0512 0.6942 0.2115 0.0431
class 2:  0.6010 0.3990 0.0000 0.0000
class 3:  0.0000 0.0862 0.8801 0.0337
class 4:  0.0000 0.0000 0.3466 0.6534

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0514 0.6517 0.2969 0.0000
class 2:  0.6003 0.3304 0.0692 0.0000
class 3:  0.0000 0.0683 0.7977 0.1341
class 4:  0.0000 0.0000 0.2283 0.7717

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.1314 0.4387 0.4299 0.0000
class 2:  0.3262 0.5547 0.1190 0.0000
class 3:  0.0000 0.1254 0.6833 0.1913
class 4:  0.0186 0.0217 0.3024 0.6573

Estimated class population shares 
 0.3383 0.0987 0.3753 0.1876 
 
Predicted class memberships (by modal posterior prob.) 
 0.338 0.0976 0.3728 0.1916 
 
========================================================= 
Fit for 4 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 111 
residual degrees of freedom: 176 
maximum log-likelihood: -2294.161 
 
AIC(4): 4810.322
BIC(4): 5216.525
G^2(4): 1564.698 (Likelihood ratio/deviance statistic) 
X^2(4): 118814 (Chi-square goodness of fit) 
 
[1] 33.83  9.87 37.53 18.76

  1   2   3   4 
 97  28 107  55 

    1     2     3     4 
33.80  9.76 37.28 19.16 
Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.5031 0.4535 0.0434
class 2:  0.3529 0.4625 0.1846 0.0000
class 3:  0.0000 0.0189 0.7830 0.1981
class 4:  0.0000 0.0000 0.0632 0.9368

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0798 0.5339 0.3601 0.0262
class 2:  0.5655 0.4047 0.0298 0.0000
class 3:  0.0207 0.0806 0.7825 0.1162
class 4:  0.0000 0.0000 0.3140 0.6860

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0920 0.4859 0.4221 0.0000
class 2:  0.3898 0.4454 0.1295 0.0353
class 3:  0.0095 0.1521 0.6456 0.1928
class 4:  0.0000 0.0337 0.3491 0.6172

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.1242 0.4777 0.3980 0.0000
class 2:  0.6736 0.2495 0.0769 0.0000
class 3:  0.0172 0.1444 0.7105 0.1280
class 4:  0.0000 0.0184 0.4020 0.5797

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0154 0.5598 0.4240 0.0008
class 2:  0.5472 0.3031 0.1497 0.0000
class 3:  0.0000 0.0469 0.7816 0.1716
class 4:  0.0000 0.0000 0.1191 0.8809

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0812 0.6646 0.2542 0.0000
class 2:  0.4982 0.4509 0.0509 0.0000
class 3:  0.0000 0.0713 0.8212 0.1075
class 4:  0.0000 0.0000 0.2865 0.7135

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0512 0.6942 0.2115 0.0431
class 2:  0.6010 0.3990 0.0000 0.0000
class 3:  0.0000 0.0862 0.8801 0.0337
class 4:  0.0000 0.0000 0.3466 0.6534

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0514 0.6517 0.2969 0.0000
class 2:  0.6003 0.3304 0.0692 0.0000
class 3:  0.0000 0.0683 0.7977 0.1341
class 4:  0.0000 0.0000 0.2283 0.7717

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.1314 0.4387 0.4299 0.0000
class 2:  0.3262 0.5547 0.1190 0.0000
class 3:  0.0000 0.1254 0.6833 0.1913
class 4:  0.0186 0.0217 0.3024 0.6573

Estimated class population shares 
 0.3383 0.0987 0.3753 0.1876 
 
Predicted class memberships (by modal posterior prob.) 
 0.338 0.0976 0.3728 0.1916 
 
========================================================= 
Fit for 4 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 111 
residual degrees of freedom: 176 
maximum log-likelihood: -2294.161 
 
AIC(4): 4810.322
BIC(4): 5216.525
G^2(4): 1564.698 (Likelihood ratio/deviance statistic) 
X^2(4): 118814 (Chi-square goodness of fit) 
 

Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.0632 0.9368
class 2:  0.0000 0.0189 0.7831 0.1981
class 3:  0.0000 0.5031 0.4535 0.0435
class 4:  0.3528 0.4626 0.1846 0.0000

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.3140 0.6860
class 2:  0.0207 0.0806 0.7825 0.1162
class 3:  0.0797 0.5339 0.3602 0.0262
class 4:  0.5654 0.4048 0.0298 0.0000

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0337 0.3491 0.6172
class 2:  0.0095 0.1520 0.6456 0.1928
class 3:  0.0919 0.4859 0.4222 0.0000
class 4:  0.3898 0.4454 0.1295 0.0353

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0184 0.4020 0.5797
class 2:  0.0172 0.1443 0.7105 0.1280
class 3:  0.1242 0.4777 0.3981 0.0000
class 4:  0.6736 0.2495 0.0769 0.0000

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.1191 0.8809
class 2:  0.0000 0.0469 0.7816 0.1715
class 3:  0.0154 0.5597 0.4240 0.0010
class 4:  0.5471 0.3032 0.1497 0.0000

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.2865 0.7135
class 2:  0.0000 0.0713 0.8212 0.1075
class 3:  0.0812 0.6645 0.2543 0.0000
class 4:  0.4981 0.4510 0.0509 0.0000

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.3466 0.6534
class 2:  0.0000 0.0862 0.8801 0.0337
class 3:  0.0512 0.6941 0.2117 0.0431
class 4:  0.6009 0.3991 0.0000 0.0000

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.2283 0.7717
class 2:  0.0000 0.0682 0.7977 0.1341
class 3:  0.0513 0.6517 0.2970 0.0000
class 4:  0.6003 0.3305 0.0693 0.0000

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0186 0.0218 0.3024 0.6573
class 2:  0.0000 0.1254 0.6833 0.1913
class 3:  0.1313 0.4387 0.4300 0.0000
class 4:  0.3262 0.5548 0.1190 0.0000

Estimated class population shares 
 0.1876 0.3752 0.3384 0.0988 
 
Predicted class memberships (by modal posterior prob.) 
 0.1916 0.3728 0.338 0.0976 
 
========================================================= 
Fit for 4 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 111 
residual degrees of freedom: 176 
maximum log-likelihood: -2294.161 
 
AIC(4): 4810.322
BIC(4): 5216.525
G^2(4): 1564.698 (Likelihood ratio/deviance statistic) 
X^2(4): 118851.1 (Chi-square goodness of fit) 
 
ALERT: iterations finished, MAXIMUM LIKELIHOOD NOT FOUND 
 
Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.0632 0.9368
class 2:  0.0000 0.0189 0.7831 0.1981
class 3:  0.0000 0.5031 0.4535 0.0435
class 4:  0.3528 0.4626 0.1846 0.0000

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.3140 0.6860
class 2:  0.0207 0.0806 0.7825 0.1162
class 3:  0.0797 0.5339 0.3602 0.0262
class 4:  0.5654 0.4048 0.0298 0.0000

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0337 0.3491 0.6172
class 2:  0.0095 0.1520 0.6456 0.1928
class 3:  0.0919 0.4859 0.4222 0.0000
class 4:  0.3898 0.4454 0.1295 0.0353

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0184 0.4020 0.5797
class 2:  0.0172 0.1443 0.7105 0.1280
class 3:  0.1242 0.4777 0.3981 0.0000
class 4:  0.6736 0.2495 0.0769 0.0000

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.1191 0.8809
class 2:  0.0000 0.0469 0.7816 0.1715
class 3:  0.0154 0.5597 0.4240 0.0010
class 4:  0.5471 0.3032 0.1497 0.0000

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.2865 0.7135
class 2:  0.0000 0.0713 0.8212 0.1075
class 3:  0.0812 0.6645 0.2543 0.0000
class 4:  0.4981 0.4510 0.0509 0.0000

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.3466 0.6534
class 2:  0.0000 0.0862 0.8801 0.0337
class 3:  0.0512 0.6941 0.2117 0.0431
class 4:  0.6009 0.3991 0.0000 0.0000

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0000 0.0000 0.2283 0.7717
class 2:  0.0000 0.0682 0.7977 0.1341
class 3:  0.0513 0.6517 0.2970 0.0000
class 4:  0.6003 0.3305 0.0693 0.0000

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.0186 0.0218 0.3024 0.6573
class 2:  0.0000 0.1254 0.6833 0.1913
class 3:  0.1313 0.4387 0.4300 0.0000
class 4:  0.3262 0.5548 0.1190 0.0000

Estimated class population shares 
 0.1876 0.3752 0.3384 0.0988 
 
Predicted class memberships (by modal posterior prob.) 
 0.1916 0.3728 0.338 0.0976 
 
========================================================= 
Fit for 4 latent classes: 
========================================================= 
number of observations: 287 
number of estimated parameters: 111 
residual degrees of freedom: 176 
maximum log-likelihood: -2294.161 
 
AIC(4): 4810.322
BIC(4): 5216.525
G^2(4): 1564.698 (Likelihood ratio/deviance statistic) 
X^2(4): 118851.1 (Chi-square goodness of fit) 
 
ALERT: iterations finished, MAXIMUM LIKELIHOOD NOT FOUND 
 

Conditional item response (column) probabilities,
 by outcome variable, for each class (row) 
 
$EF.CARE1
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.2727 0.5323 0.1951 0.0000
class 2:  0.0000 0.4743 0.4757 0.0499
class 3:  0.0000 0.0181 0.7829 0.1989
class 4:  0.0000 0.0000 0.0594 0.9406

$EF.CARE2
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.5378 0.4059 0.0292 0.0271
class 2:  0.0424 0.5449 0.3988 0.0139
class 3:  0.0230 0.0769 0.7760 0.1241
class 4:  0.0000 0.0000 0.3168 0.6832

$EF.LEARN
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.3943 0.4282 0.1503 0.0273
class 2:  0.0613 0.4919 0.4468 0.0000
class 3:  0.0097 0.1532 0.6410 0.1960
class 4:  0.0000 0.0327 0.3493 0.6179

$EF.INVOLVE
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.6682 0.2723 0.0596 0.0000
class 2:  0.0734 0.4885 0.4381 0.0000
class 3:  0.0178 0.1418 0.7075 0.1329
class 4:  0.0000 0.0186 0.4051 0.5763

$EF.TRUST
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.4635 0.3487 0.1878 0.0000
class 2:  0.0000 0.5609 0.4362 0.0029
class 3:  0.0000 0.0458 0.7810 0.1732
class 4:  0.0000 0.0000 0.1160 0.8840

$EF.SUPP
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.3845 0.5641 0.0514 0.0000
class 2:  0.0881 0.6385 0.2735 0.0000
class 3:  0.0000 0.0658 0.8263 0.1079
class 4:  0.0000 0.0000 0.2798 0.7202

$FSSB.IS
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.5057 0.3965 0.0707 0.0271
class 2:  0.0385 0.7225 0.2040 0.0350
class 3:  0.0000 0.0808 0.8843 0.0349
class 4:  0.0000 0.0000 0.3416 0.6584

$FSSB.ES
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.4671 0.3968 0.1361 0.0000
class 2:  0.0543 0.6459 0.2998 0.0000
class 3:  0.0000 0.0702 0.7930 0.1368
class 4:  0.0000 0.0000 0.2254 0.7746

$FSSB.CM
           Pr(1)  Pr(2)  Pr(3)  Pr(4)
class 1:  0.2987 0.5587 0.1426 0.0000
class 2:  0.1232 0.4249 0.4519 0.0000
class 3:  0.0000 0.1241 0.6856 0.1903
class 4:  0.0187 0.0205 0.2938 0.6669

Estimated class population shares 
 0.1278 0.3124 0.3739 0.1859 
 
Predicted class memberships (by modal posterior prob.) 
 0.1289 0.3136 0.3693 0.1882 
 
========================================================= 
Fit for 4 latent classes: 
========================================================= 
2 / 1 
                       Coefficient  Std. error  t value  Pr(>|t|)
(Intercept)                1.03947     0.73796    1.409     0.161
AGECATE36-55               9.13051     0.52540   17.378     0.000
AGECATELess than 35       -0.00285     0.79703   -0.004     0.997
AGECATEMore than 55        0.50723     1.59331    0.318     0.751
GENDERMale                -0.33674     0.67100   -0.502     0.616
POSITIONMiddle Manager     0.65750     0.77389    0.850     0.397
POSITIONTop Manager        2.12669     1.75530    1.212     0.228
YEAR                      -0.06306     0.05120   -1.231     0.220
========================================================= 
3 / 1 
                       Coefficient  Std. error  t value  Pr(>|t|)
(Intercept)                1.30151     0.69231    1.880     0.062
AGECATE36-55               9.04882     0.47806   18.928     0.000
AGECATELess than 35       -0.22209     0.76499   -0.290     0.772
AGECATEMore than 55        0.02120     1.48005    0.014     0.989
GENDERMale                 0.21782     0.63160    0.345     0.731
POSITIONMiddle Manager     0.22887     0.74522    0.307     0.759
POSITIONTop Manager        1.59993     1.72538    0.927     0.355
YEAR                      -0.05769     0.04351   -1.326     0.187
========================================================= 
4 / 1 
                       Coefficient  Std. error  t value  Pr(>|t|)
(Intercept)                0.49372     0.83049    0.594     0.553
AGECATE36-55               8.65946     0.63264   13.688     0.000
AGECATELess than 35        0.15311     0.87624    0.175     0.862
AGECATEMore than 55        0.28391     1.59166    0.178     0.859
GENDERMale                -0.20026     0.81942   -0.244     0.807
POSITIONMiddle Manager     0.01824     0.91393    0.020     0.984
POSITIONTop Manager        1.58116     1.75692    0.900     0.370
YEAR                      -0.04066     0.04625   -0.879     0.381
========================================================= 
number of observations: 287 
number of estimated parameters: 132 
residual degrees of freedom: 155 
maximum log-likelihood: -2285.927 
 
AIC(4): 4835.855
BIC(4): 5318.906
X^2(4): 72379.29 (Chi-square goodness of fit) 
 
ALERT: estimation algorithm automatically restarted with new initial values 
 

Plot

Logit


Call:
glm(formula = data_sel1$class_1 ~ GENDER + AGECATE + POSITION + 
    YEAR, family = binomial, data = data_sel1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.7329  -0.6784  -0.6398  -0.5533   2.0982  

Coefficients:
                        Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.433640   0.380057  -3.772 0.000162 ***
GENDERMale             -0.239904   0.336100  -0.714 0.475357    
AGECATE36-55           -0.256175   0.818680  -0.313 0.754347    
AGECATELess than 35     0.193291   0.368811   0.524 0.600215    
AGECATEMore than 55     0.001414   0.731322   0.002 0.998458    
POSITIONMiddle Manager -0.248657   0.427189  -0.582 0.560515    
POSITIONTop Manager    -0.081514   0.469323  -0.174 0.862114    
YEAR                    0.006299   0.025256   0.249 0.803037    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 280.45  on 286  degrees of freedom
Residual deviance: 278.69  on 279  degrees of freedom
AIC: 294.69

Number of Fisher Scoring iterations: 4

Call:
glm(formula = data_sel1$class_2 ~ GENDER + AGECATE + POSITION + 
    YEAR, family = binomial, data = data_sel1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.2609  -0.9479  -0.8901   1.3180   1.6800  

Coefficients:
                       Estimate Std. Error z value Pr(>|z|)  
(Intercept)            -0.52805    0.30610  -1.725   0.0845 .
GENDERMale              0.44513    0.26359   1.689   0.0913 .
AGECATE36-55            0.42432    0.60356   0.703   0.4820  
AGECATELess than 35    -0.13453    0.29856  -0.451   0.6523  
AGECATEMore than 55    -0.25022    0.60655  -0.413   0.6800  
POSITIONMiddle Manager  0.02494    0.32925   0.076   0.9396  
POSITIONTop Manager     0.02812    0.37559   0.075   0.9403  
YEAR                   -0.01472    0.02108  -0.699   0.4848  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 379.09  on 286  degrees of freedom
Residual deviance: 374.92  on 279  degrees of freedom
AIC: 390.92

Number of Fisher Scoring iterations: 4

Call:
glm(formula = data_sel1$class_3 ~ GENDER + AGECATE + POSITION + 
    YEAR, family = binomial, data = data_sel1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.1303  -0.8983  -0.8744   1.4053   1.6528  

Coefficients:
                       Estimate Std. Error z value Pr(>|z|)  
(Intercept)            -0.61656    0.31071  -1.984   0.0472 *
GENDERMale             -0.19006    0.27450  -0.692   0.4887  
AGECATE36-55            0.27936    0.61740   0.452   0.6509  
AGECATELess than 35    -0.07113    0.30422  -0.234   0.8151  
AGECATEMore than 55     0.28727    0.58950   0.487   0.6260  
POSITIONMiddle Manager  0.17096    0.33749   0.507   0.6125  
POSITIONTop Manager     0.39795    0.37370   1.065   0.2869  
YEAR                   -0.01151    0.02114  -0.544   0.5862  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 367.18  on 286  degrees of freedom
Residual deviance: 364.98  on 279  degrees of freedom
AIC: 380.98

Number of Fisher Scoring iterations: 4

Call:
glm(formula = data_sel1$class_4 ~ GENDER + AGECATE + POSITION + 
    YEAR, family = binomial, data = data_sel1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.8826  -0.4942  -0.4460  -0.2806   2.4623  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)              -2.34988    0.50306  -4.671    3e-06 ***
GENDERMale               -0.29076    0.45904  -0.633    0.526    
AGECATE36-55            -15.58123 1079.51893  -0.014    0.988    
AGECATELess than 35       0.17088    0.49537   0.345    0.730    
AGECATEMore than 55      -0.20691    0.93146  -0.222    0.824    
POSITIONMiddle Manager   -0.07759    0.52699  -0.147    0.883    
POSITIONTop Manager      -1.55089    1.05454  -1.471    0.141    
YEAR                      0.04594    0.02948   1.558    0.119    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 183.5  on 286  degrees of freedom
Residual deviance: 174.3  on 279  degrees of freedom
AIC: 190.3

Number of Fisher Scoring iterations: 16

LCA Descriptive

Call: xtabs(formula = ~data_sel1$class + data_sel1$AGE + data_sel1$GENDER + 
    data_sel1$POSITION + data_sel1$YEAR)
Number of cases in table: 287 
Number of factors: 5 
Test for independence of all factors:
    Chisq = 5047, df = 3126, p-value = 1.728e-94
    Chi-squared approximation may be incorrect
   
    35-55 36-55 Less than 35 More than 55
  1    21     2           29            3
  2    46     6           50            5
  3    41     5           45            6
  4    12     0           14            2
   
    Female Male
  1     39   16
  2     64   43
  3     66   31
  4     20    8
   
    Employee Middle Manager Top Manager
  1       39              9           7
  2       69             23          15
  3       61             20          16
  4       21              6           1
   
     0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 22 23
  1  0 12  6  6  5  8  6  0  0  0  2  0  0  1  1  2  0  0  0  1  1  0  1
  2  2 26 13 12 10  4  4  2  4  2  4  2  0  2  1  6  2  2  0  1  1  2  0
   
    24 25 28 29 31 32 34 35 37 38
  1  0  1  0  0  1  0  0  1  0  0
  2  1  2  0  1  0  1  0  0  0  0
 [ reached getOption("max.print") -- omitted 2 rows ]

SEM

Cronbach a

$sample.size
[1] 287

$number.of.items
[1] 9

$alpha
[1] 0.9306655

Model (no group)

lavaan (0.5-20) converged normally after  33 iterations

  Number of observations                           287

  Estimator                                         ML
  Minimum Function Test Statistic               41.509
  Degrees of freedom                                26
  P-value (Chi-square)                           0.028

Model test baseline model:

  Minimum Function Test Statistic             1690.636
  Degrees of freedom                                36
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    0.991
  Tucker-Lewis Index (TLI)                       0.987

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2383.240
  Loglikelihood unrestricted model (H1)      -2362.486

  Number of free parameters                         19
  Akaike (AIC)                                4804.480
  Bayesian (BIC)                              4874.011
  Sample-size adjusted Bayesian (BIC)         4813.760

Root Mean Square Error of Approximation:

  RMSEA                                          0.046
  90 Percent Confidence Interval          0.015  0.071
  P-value RMSEA <= 0.05                          0.582

Standardized Root Mean Square Residual:

  SRMR                                           0.022

Parameter Estimates:

  Information                                 Expected
  Standard Errors                             Standard

Latent Variables:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
  EFFECTIVE =~                                                          
    EF.CARE1          1.000                               0.642    0.811
    EF.CARE2          1.054    0.069   15.299    0.000    0.676    0.790
    EF.LEARN          0.910    0.071   12.907    0.000    0.584    0.696
    EF.INVOLVE        0.968    0.073   13.310    0.000    0.621    0.713
    EF.TRUST          1.087    0.065   16.694    0.000    0.697    0.841
    EF.SUPP           1.058    0.067   15.842    0.000    0.679    0.810
  FSSB =~                                                               
    FSSB.IS           1.000                               0.658    0.806
    FSSB.ES           1.065    0.067   15.981    0.000    0.701    0.823
 [ reached getOption("max.print") -- omitted 1 row ]

Regressions:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
  EFFECTIVE ~                                                           
    FSSB              0.968    0.065   14.783    0.000    0.992    0.992

Variances:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
    EF.CARE1          0.215    0.021   10.346    0.000    0.215    0.343
    EF.CARE2          0.274    0.026   10.564    0.000    0.274    0.375
    EF.LEARN          0.364    0.033   11.188    0.000    0.364    0.516
    EF.INVOLVE        0.374    0.034   11.109    0.000    0.374    0.492
    EF.TRUST          0.202    0.020    9.916    0.000    0.202    0.293
    EF.SUPP           0.241    0.023   10.349    0.000    0.241    0.343
    FSSB.IS           0.234    0.024    9.878    0.000    0.234    0.351
    FSSB.ES           0.233    0.025    9.512    0.000    0.233    0.322
    FSSB.CM           0.377    0.034   11.056    0.000    0.377    0.522
    EFFECTIVE         0.006    0.012    0.504    0.614    0.015    0.015
 [ reached getOption("max.print") -- omitted 1 row ]
               npar                fmin               chisq 
             19.000               0.072              41.509 
                 df              pvalue      baseline.chisq 
             26.000               0.028            1690.636 
        baseline.df     baseline.pvalue                 cfi 
             36.000               0.000               0.991 
                tli                nnfi                 rfi 
              0.987               0.987               0.966 
                nfi                pnfi                 ifi 
              0.975               0.704               0.991 
                rni                logl   unrestricted.logl 
              0.991           -2383.240           -2362.486 
                aic                 bic              ntotal 
           4804.480            4874.011             287.000 
               bic2               rmsea      rmsea.ci.lower 
           4813.760               0.046               0.015 
     rmsea.ci.upper        rmsea.pvalue                 rmr 
              0.071               0.582               0.016 
         rmr_nomean                srmr        srmr_bentler 
              0.016               0.022               0.022 
srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
              0.022               0.022               0.022 
         srmr_mplus   srmr_mplus_nomean               cn_05 
              0.022               0.022             269.861 
              cn_01                 gfi                agfi 
            316.578               0.970               0.949 
               pgfi                 mfi                ecvi 
              0.561               0.973               0.277 
      gammaHat    adjGammaHat baseline.rmsea     aic.smallN     bic.priorN 
     0.9880933      0.9793923      0.4001834   4769.3268690   4874.0766762 
           hqc            sic 
  4832.3470585   4893.6120376 
      gammaHat    adjGammaHat baseline.rmsea     aic.smallN     bic.priorN 
     0.9880933      0.9793923      0.4001834   4769.3268690   4874.0766762 
           hqc            sic 
  4832.3470585   4893.6120376 
               npar                fmin               chisq 
             19.000               0.072              41.509 
                 df              pvalue      baseline.chisq 
             26.000               0.028            1690.636 
        baseline.df     baseline.pvalue                 cfi 
             36.000               0.000               0.991 
                tli                nnfi                 rfi 
              0.987               0.987               0.966 
                nfi                pnfi                 ifi 
              0.975               0.704               0.991 
                rni                logl   unrestricted.logl 
              0.991           -2383.240           -2362.486 
                aic                 bic              ntotal 
           4804.480            4874.011             287.000 
               bic2               rmsea      rmsea.ci.lower 
           4813.760               0.046               0.015 
     rmsea.ci.upper        rmsea.pvalue                 rmr 
              0.071               0.582               0.016 
         rmr_nomean                srmr        srmr_bentler 
              0.016               0.022               0.022 
srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
              0.022               0.022               0.022 
         srmr_mplus   srmr_mplus_nomean               cn_05 
              0.022               0.022             269.861 
              cn_01                 gfi                agfi 
            316.578               0.970               0.949 
               pgfi                 mfi                ecvi 
              0.561               0.973               0.277 
       EFFECTIVE      FSSB     total
alpha  0.9001374 0.8115497 0.9306655
omega  0.9010469 0.8177238 0.9312515
omega2 0.9010469 0.8177238 0.9312515
omega3 0.9018590 0.8225605 0.9298857
avevar 0.6036494 0.6005063 0.6025994
$lambda
           EFFECT FSSB
EF.CARE1        0    0
EF.CARE2        1    0
EF.LEARN        2    0
EF.INVOLVE      3    0
EF.TRUST        4    0
EF.SUPP         5    0
FSSB.IS         0    0
FSSB.ES         0    6
FSSB.CM         0    7

$theta
           EF.CARE1 EF.CARE2 EF.LEA EF.INV EF.TRU EF.SUP FSSB.I FSSB.E
EF.CARE1    9                                                         
EF.CARE2    0       10                                                
EF.LEARN    0        0       11                                       
EF.INVOLVE  0        0        0     12                                
EF.TRUST    0        0        0      0     13                         
EF.SUPP     0        0        0      0      0     14                  
FSSB.IS     0        0        0      0      0      0     15           
FSSB.ES     0        0        0      0      0      0      0     16    
           FSSB.C
EF.CARE1         
EF.CARE2         
EF.LEARN         
EF.INVOLVE       
EF.TRUST         
EF.SUPP          
FSSB.IS          
FSSB.ES          
 [ reached getOption("max.print") -- omitted 1 row ]

$psi
          EFFECT FSSB
EFFECTIVE 18         
FSSB       0     19  

$beta
          EFFECT FSSB
EFFECTIVE      0    8
FSSB           0    0
EFFECTIVE      FSSB 
0.6062147 0.6016515 

Measruement Invarance


Measurement invariance models:

Model 1 : fit.configural
Model 2 : fit.loadings
Model 3 : fit.intercepts
Model 4 : fit.means

Chi Square Difference Test

               Df    AIC    BIC   Chisq Chisq diff Df diff Pr(>Chisq)    
fit.configural 52 4446.6 4651.5  75.136                                  
fit.loadings   59 4435.5 4614.8  78.077      2.941       7     0.8904    
fit.intercepts 66 4430.2 4583.9  86.755      8.678       7     0.2766    
fit.means      68 4695.5 4841.8 356.051    269.297       2     <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Fit measures:

                 cfi rmsea cfi.delta rmsea.delta
fit.configural 0.956 0.056        NA          NA
fit.loadings   0.964 0.047     0.008       0.008
fit.intercepts 0.961 0.047     0.003       0.001
fit.means      0.453 0.172     0.508       0.125

Measurement invariance models:

Model 1 : fit.configural
Model 2 : fit.loadings
Model 3 : fit.intercepts
Model 4 : fit.means

Chi Square Difference Test

                Df    AIC    BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
fit.configural  78 4806.1 5113.5 133.26                                  
fit.loadings    92 4795.6 5051.8 150.79     17.528      14    0.22913    
fit.intercepts 106 4817.6 5022.6 200.79     50.000      14  6.106e-06 ***
fit.means      110 4822.4 5012.7 213.53     12.736       4    0.01264 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Fit measures:

                 cfi rmsea cfi.delta rmsea.delta
fit.configural 0.967 0.086        NA          NA
fit.loadings   0.965 0.082     0.002       0.004
fit.intercepts 0.944 0.097     0.021       0.015
fit.means      0.939 0.099     0.005       0.003

Multigroup SEM

lavaan (0.5-20) converged normally after  62 iterations

  Number of observations per group         
  1                                                162
  2                                                125

  Estimator                                         ML
  Minimum Function Test Statistic               75.136
  Degrees of freedom                                52
  P-value (Chi-square)                           0.020

Chi-square for each group:

  1                                             41.871
  2                                             33.264

Model test baseline model:

  Minimum Function Test Statistic              598.422
  Degrees of freedom                                72
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    0.956
  Tucker-Lewis Index (TLI)                       0.939

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2167.275
  Loglikelihood unrestricted model (H1)      -2129.707

  Number of free parameters                         56
  Akaike (AIC)                                4446.550
  Bayesian (BIC)                              4651.481
  Sample-size adjusted Bayesian (BIC)         4473.899

Root Mean Square Error of Approximation:

  RMSEA                                          0.056
  90 Percent Confidence Interval          0.023  0.082
  P-value RMSEA <= 0.05                          0.349

Standardized Root Mean Square Residual:

  SRMR                                           0.047

Parameter Estimates:

  Information                                 Expected
  Standard Errors                             Standard


Group 1 [1]:

Latent Variables:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
  EFFECTIVE =~                                                          
    EF.CARE1          1.000                               0.342    0.659
    EF.CARE2          1.082    0.161    6.715    0.000    0.370    0.627
    EF.LEARN          0.908    0.172    5.294    0.000    0.311    0.477
    EF.INVOLVE        0.962    0.170    5.661    0.000    0.329    0.514
    EF.TRUST          1.080    0.151    7.166    0.000    0.370    0.679
    EF.SUPP           0.936    0.146    6.423    0.000    0.321    0.595
  FSSB =~                                                               
    FSSB.IS           1.000                               0.362    0.707
    FSSB.ES           1.000    0.136    7.351    0.000    0.362    0.664
 [ reached getOption("max.print") -- omitted 1 row ]

Regressions:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
  EFFECTIVE ~                                                           
    FSSB              0.927    0.145    6.406    0.000    0.979    0.979

Intercepts:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
    EF.CARE1          3.432    0.041   84.056    0.000    3.432    6.604
    EF.CARE2          3.228    0.046   69.549    0.000    3.228    5.464
    EF.LEARN          3.210    0.051   62.662    0.000    3.210    4.923
    EF.INVOLVE        3.148    0.050   62.566    0.000    3.148    4.916
    EF.TRUST          3.377    0.043   78.927    0.000    3.377    6.201
    EF.SUPP           3.259    0.042   76.926    0.000    3.259    6.044
    FSSB.IS           3.185    0.040   79.203    0.000    3.185    6.223
    FSSB.ES           3.302    0.043   77.077    0.000    3.302    6.056
    FSSB.CM           3.247    0.049   65.687    0.000    3.247    5.161
    EFFECTIVE         0.000                               0.000    0.000
 [ reached getOption("max.print") -- omitted 1 row ]

Variances:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
    EF.CARE1          0.153    0.020    7.646    0.000    0.153    0.566
    EF.CARE2          0.212    0.027    7.862    0.000    0.212    0.607
    EF.LEARN          0.328    0.039    8.488    0.000    0.328    0.772
    EF.INVOLVE        0.302    0.036    8.375    0.000    0.302    0.736
    EF.TRUST          0.160    0.021    7.482    0.000    0.160    0.538
    EF.SUPP           0.188    0.023    8.042    0.000    0.188    0.646
    FSSB.IS           0.131    0.020    6.620    0.000    0.131    0.500
    FSSB.ES           0.166    0.023    7.230    0.000    0.166    0.559
    FSSB.CM           0.332    0.038    8.628    0.000    0.332    0.838
    EFFECTIVE         0.005    0.012    0.393    0.695    0.041    0.041
 [ reached getOption("max.print") -- omitted 1 row ]


Group 2 [2]:

Latent Variables:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
  EFFECTIVE =~                                                          
    EF.CARE1          1.000                               0.412    0.608
    EF.CARE2          1.091    0.216    5.042    0.000    0.449    0.609
    EF.LEARN          0.709    0.190    3.735    0.000    0.292    0.412
    EF.INVOLVE        0.732    0.201    3.633    0.000    0.301    0.399
    EF.TRUST          1.127    0.207    5.451    0.000    0.464    0.695
    EF.SUPP           0.712    0.170    4.184    0.000    0.293    0.473
  FSSB =~                                                               
    FSSB.IS           1.000                               0.294    0.432
    FSSB.ES           1.032    0.304    3.393    0.001    0.303    0.472
 [ reached getOption("max.print") -- omitted 1 row ]

Regressions:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
  EFFECTIVE ~                                                           
    FSSB              1.377    0.479    2.875    0.004    0.982    0.982

Intercepts:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
    EF.CARE1          2.376    0.061   39.226    0.000    2.376    3.508
    EF.CARE2          2.128    0.066   32.269    0.000    2.128    2.886
    EF.LEARN          2.208    0.063   34.886    0.000    2.208    3.120
    EF.INVOLVE        2.080    0.068   30.813    0.000    2.080    2.756
    EF.TRUST          2.224    0.060   37.240    0.000    2.224    3.331
    EF.SUPP           2.032    0.055   36.711    0.000    2.032    3.284
    FSSB.IS           2.048    0.061   33.698    0.000    2.048    3.014
    FSSB.ES           2.064    0.057   35.956    0.000    2.064    3.216
    FSSB.CM           2.176    0.063   34.508    0.000    2.176    3.087
    EFFECTIVE         0.000                               0.000    0.000
 [ reached getOption("max.print") -- omitted 1 row ]

Variances:
                   Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
    EF.CARE1          0.289    0.044    6.525    0.000    0.289    0.631
    EF.CARE2          0.342    0.053    6.517    0.000    0.342    0.629
    EF.LEARN          0.416    0.056    7.430    0.000    0.416    0.830
    EF.INVOLVE        0.479    0.064    7.466    0.000    0.479    0.841
    EF.TRUST          0.231    0.040    5.697    0.000    0.231    0.517
    EF.SUPP           0.297    0.041    7.233    0.000    0.297    0.776
    FSSB.IS           0.376    0.054    6.963    0.000    0.376    0.813
    FSSB.ES           0.320    0.048    6.625    0.000    0.320    0.777
    FSSB.CM           0.428    0.059    7.318    0.000    0.428    0.861
    EFFECTIVE         0.006    0.045    0.134    0.894    0.036    0.036
 [ reached getOption("max.print") -- omitted 1 row ]
               npar                fmin               chisq 
             56.000               0.131              75.136 
                 df              pvalue      baseline.chisq 
             52.000               0.020             598.422 
        baseline.df     baseline.pvalue                 cfi 
             72.000               0.000               0.956 
                tli                nnfi                 rfi 
              0.939               0.939               0.826 
                nfi                pnfi                 ifi 
              0.874               0.632               0.958 
                rni                logl   unrestricted.logl 
              0.956           -2167.275           -2129.707 
                aic                 bic              ntotal 
           4446.550            4651.481             287.000 
               bic2               rmsea      rmsea.ci.lower 
           4473.899               0.056               0.023 
     rmsea.ci.upper        rmsea.pvalue                 rmr 
              0.082               0.349               0.019 
         rmr_nomean                srmr        srmr_bentler 
              0.021               0.047               0.047 
srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
              0.052               0.047               0.052 
         srmr_mplus   srmr_mplus_nomean               cn_05 
              0.047               0.052             267.741 
              cn_01                 gfi                agfi 
            301.292               0.995               0.991 
               pgfi                 mfi 
              0.479               0.960 
      gammaHat    adjGammaHat baseline.rmsea     aic.smallN     bic.priorN 
     0.9823409      0.9694361      0.2257224   4362.3066442   4651.6759094 
           hqc            sic 
  4528.6833520   4654.4508879 

LCA - Excel

SEM - GRAPH

Eversole

Chungil Chae

2016-10-11