Tabla descripciĂłn de la muestra

schour %>% 
  group_by(Sexo) %>% 
  summarise("N"=n(),   "Promedio edad real" = mean(EDAD.REAL), "DesviaciĂłn estĂĄndard edad real" = sd(EDAD.REAL), 
            "Promedio estimado" = mean(Edad.dentaria.segĂșn.SM), "DesviaciĂłn estĂĄndard estimada" = sd(Edad.dentaria.segĂșn.SM)) %>% 
  ungroup()
## Source: local data frame [2 x 6]
## 
##     Sexo     N Promedio edad real DesviaciĂłn estĂĄndard edad real
##   (fctr) (int)              (dbl)                          (dbl)
## 1 Hombre    97           11.69072                       4.903997
## 2  Mujer   123           12.26016                       4.804092
## Variables not shown: Promedio estimado (dbl), DesviaciĂłn estĂĄndard
##   estimada (dbl)
schour %>% 
  group_by(EDAD.REAL) %>% 
  summarise("N"=n(), 
            "Promedio estimado" = mean(Edad.dentaria.segĂșn.SM), "DesviaciĂłn estĂĄndard estimada" = sd(Edad.dentaria.segĂșn.SM)) %>% 
  ungroup()
## Source: local data frame [19 x 4]
## 
##    EDAD.REAL     N Promedio estimado DesviaciĂłn estĂĄndard estimada
##        (int) (int)             (dbl)                         (dbl)
## 1          3     5          3.400000                     0.5477226
## 2          4    12          5.083333                     1.3113722
## 3          5     5          5.600000                     0.5477226
## 4          6    13          6.769231                     0.5991447
## 5          7    12          7.666667                     0.7784989
## 6          8    14          8.285714                     0.9944903
## 7          9    14          9.642857                     0.9287827
## 8         10    14          9.428571                     1.3985864
## 9         11    13         11.230769                     1.7394370
## 10        12    11         12.545455                     2.8412545
## 11        13    18         13.722222                     1.9942728
## 12        14    15         14.800000                     0.7745967
## 13        15    13         15.461538                     1.6641006
## 14        16    11         16.636364                     2.8025962
## 15        17    13         18.230769                     3.1132471
## 16        18    13         18.230769                     3.1132471
## 17        19    12         20.000000                     2.3354968
## 18        20    11         19.909091                     2.4271195
## 19        21     1         15.000000                            NA
addmargins(table(schour$EDAD.REAL, schour$Sexo))
##      
##       Hombre Mujer Sum
##   3        4     1   5
##   4        6     6  12
##   5        2     3   5
##   6        6     7  13
##   7        6     6  12
##   8        6     8  14
##   9        5     9  14
##   10       5     9  14
##   11       3    10  13
##   12       7     4  11
##   13      11     7  18
##   14       5    10  15
##   15       4     9  13
##   16       6     5  11
##   17       8     5  13
##   18       6     7  13
##   19       3     9  12
##   20       4     7  11
##   21       0     1   1
##   Sum     97   123 220

Para todos

fit <- lm(schour$EDAD.REAL~schour$Edad.dentaria.segĂșn.SM)
fit
## 
## Call:
## lm(formula = schour$EDAD.REAL ~ schour$Edad.dentaria.segĂșn.SM)
## 
## Coefficients:
##                   (Intercept)  schour$Edad.dentaria.segĂșn.SM  
##                        1.1037                         0.8712
summary(fit)
## 
## Call:
## lm(formula = schour$EDAD.REAL ~ schour$Edad.dentaria.segĂșn.SM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.3981 -1.1712 -0.1712  0.8288  6.8288 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    1.10374    0.32335   3.413 0.000765 ***
## schour$Edad.dentaria.segĂșn.SM  0.87116    0.02389  36.462  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.823 on 218 degrees of freedom
## Multiple R-squared:  0.8591, Adjusted R-squared:  0.8585 
## F-statistic:  1330 on 1 and 218 DF,  p-value: < 2.2e-16
scatterplot(schour$EDAD.REAL ~ schour$Edad.dentaria.segĂșn.SM, 
            main = "Edad cronolĂłgica versus edad dentaria Schour y Massler", 
            xlab = "Edad cronolĂłgica", ylab = "Edad dentaria segĂșn Schour y Massler")

Por sexo

Hombres

## 
## Call:
## lm(formula = schour_h$EDAD.REAL ~ schour_h$Edad.dentaria.segĂșn.SM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0487 -1.0886 -0.1994  0.9114  5.0067 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      1.25484    0.43373   2.893  0.00473 ** 
## schour_h$Edad.dentaria.segĂșn.SM  0.84923    0.03233  26.270  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.715 on 95 degrees of freedom
## Multiple R-squared:  0.879,  Adjusted R-squared:  0.8777 
## F-statistic: 690.1 on 1 and 95 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = schour_h$EDAD.REAL ~ schour_h$Edad.dentaria.segĂșn.SM)
## 
## Coefficients:
##                     (Intercept)  schour_h$Edad.dentaria.segĂșn.SM  
##                          1.2548                           0.8492

Mujeres

## 
## Call:
## lm(formula = schour_m$EDAD.REAL ~ schour_m$Edad.dentaria.segĂșn.SM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.6493 -0.9672 -0.3083  0.6917  6.6917 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      0.95568    0.47460   2.014   0.0463 *  
## schour_m$Edad.dentaria.segĂșn.SM  0.89017    0.03483  25.555   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.907 on 121 degrees of freedom
## Multiple R-squared:  0.8437, Adjusted R-squared:  0.8424 
## F-statistic: 653.1 on 1 and 121 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = schour_m$EDAD.REAL ~ schour_m$Edad.dentaria.segĂșn.SM)
## 
## Coefficients:
##                     (Intercept)  schour_m$Edad.dentaria.segĂșn.SM  
##                          0.9557                           0.8902

ComparaciĂłn entre h y m

## Warning in anova.lmlist(object, ...): models with response '"schour_h
## $EDAD.REAL"' removed because response differs from model 1
## Analysis of Variance Table
## 
## Response: schour_m$EDAD.REAL
##                                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## schour_m$Edad.dentaria.segĂșn.SM   1 2375.54 2375.54  653.08 < 2.2e-16 ***
## Residuals                       121  440.13    3.64                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

CorrelaciĂłn por edad

Igual o menos de 8

##    
##     3 4 5 6 7 8 9 10
##   3 3 2 0 0 0 0 0  0
##   4 0 5 4 1 1 1 0  0
##   5 0 0 2 3 0 0 0  0
##   6 0 0 0 4 8 1 0  0
##   7 0 0 0 0 6 4 2  0
##   8 0 0 0 0 4 3 6  1
## 
## Call:
## lm(formula = schour_3a8$EDAD.REAL ~ schour_3a8$Edad.dentaria.segĂșn.SM)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.08665 -0.45210 -0.00027  0.54790  1.73062 
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        0.54844    0.43362   1.265    0.211    
## schour_3a8$Edad.dentaria.segĂșn.SM  0.81728    0.06364  12.842   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8603 on 59 degrees of freedom
## Multiple R-squared:  0.7365, Adjusted R-squared:  0.7321 
## F-statistic: 164.9 on 1 and 59 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = schour_3a8$EDAD.REAL ~ schour_3a8$Edad.dentaria.segĂșn.SM)
## 
## Coefficients:
##                       (Intercept)  schour_3a8$Edad.dentaria.segĂșn.SM  
##                            0.5484                             0.8173

de 9 a 11

##     
##      6 7 8 9 10 11 12 15
##   9  0 0 0 8  4  1  1  0
##   10 1 0 1 5  5  1  1  0
##   11 0 1 0 0  1  6  4  1
## 
## Call:
## lm(formula = schour_9a11$EDAD.REAL ~ schour_9a11$Edad.dentaria.segĂșn.SM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3867 -0.7467  0.0400  0.6133  1.6800 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                         7.82667    0.77856  10.053  2.2e-12
## schour_9a11$Edad.dentaria.segĂșn.SM  0.21333    0.07639   2.793  0.00806
##                                       
## (Intercept)                        ***
## schour_9a11$Edad.dentaria.segĂșn.SM ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7592 on 39 degrees of freedom
## Multiple R-squared:  0.1667, Adjusted R-squared:  0.1453 
## F-statistic: 7.799 on 1 and 39 DF,  p-value: 0.008057
## 
## Call:
## lm(formula = schour_9a11$EDAD.REAL ~ schour_9a11$Edad.dentaria.segĂșn.SM)
## 
## Coefficients:
##                        (Intercept)  schour_9a11$Edad.dentaria.segĂșn.SM  
##                             7.8267                              0.2133

de 12 a 21

##     
##       9 10 11 12 15 21
##   12  0  0  3  7  0  1
##   13  1  1  0  4 12  0
##   14  0  0  0  1 14  0
##   15  0  0  0  0 12  1
##   16  0  0  0  0  8  3
##   17  0  0  0  0  6  7
##   18  0  0  0  0  6  7
##   19  0  0  0  0  2 10
##   20  0  0  0  0  2  9
##   21  0  0  0  0  1  0
## 
## Call:
## lm(formula = schour_12a21$EDAD.REAL ~ schour_12a21$Edad.dentaria.segĂșn.SM)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3163 -1.3163 -0.2004  0.9155  5.9155 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)                          7.00517    0.84249   8.315    2e-13
## schour_12a21$Edad.dentaria.segĂșn.SM  0.53862    0.05022  10.725   <2e-16
##                                        
## (Intercept)                         ***
## schour_12a21$Edad.dentaria.segĂșn.SM ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.84 on 116 degrees of freedom
## Multiple R-squared:  0.4979, Adjusted R-squared:  0.4935 
## F-statistic:   115 on 1 and 116 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = schour_12a21$EDAD.REAL ~ schour_12a21$Edad.dentaria.segĂșn.SM)
## 
## Coefficients:
##                         (Intercept)  schour_12a21$Edad.dentaria.segĂșn.SM  
##                              7.0052                               0.5386
## Warning in smoother(.x, .y, col = col[2], log.x = logged("x"), log.y =
## logged("y"), : could not fit smooth

## 
##  Welch Two Sample t-test
## 
## data:  schour$Edad.dentaria.segĂșn.SM and schour$EDAD.REAL
## t = 1.0672, df = 436.33, p-value = 0.2864
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4284364  1.4466183
## sample estimates:
## mean of x mean of y 
##  12.51818  12.00909