Tabla descripciĂłn de la muestra
schour %>%
group_by(Sexo) %>%
summarise("N"=n(), "Promedio edad real" = mean(EDAD.REAL), "DesviaciĂłn estĂĄndard edad real" = sd(EDAD.REAL),
"Promedio estimado" = mean(Edad.dentaria.segĂșn.SM), "DesviaciĂłn estĂĄndard estimada" = sd(Edad.dentaria.segĂșn.SM)) %>%
ungroup()
## Source: local data frame [2 x 6]
##
## Sexo N Promedio edad real DesviaciĂłn estĂĄndard edad real
## (fctr) (int) (dbl) (dbl)
## 1 Hombre 97 11.69072 4.903997
## 2 Mujer 123 12.26016 4.804092
## Variables not shown: Promedio estimado (dbl), DesviaciĂłn estĂĄndard
## estimada (dbl)
schour %>%
group_by(EDAD.REAL) %>%
summarise("N"=n(),
"Promedio estimado" = mean(Edad.dentaria.segĂșn.SM), "DesviaciĂłn estĂĄndard estimada" = sd(Edad.dentaria.segĂșn.SM)) %>%
ungroup()
## Source: local data frame [19 x 4]
##
## EDAD.REAL N Promedio estimado DesviaciĂłn estĂĄndard estimada
## (int) (int) (dbl) (dbl)
## 1 3 5 3.400000 0.5477226
## 2 4 12 5.083333 1.3113722
## 3 5 5 5.600000 0.5477226
## 4 6 13 6.769231 0.5991447
## 5 7 12 7.666667 0.7784989
## 6 8 14 8.285714 0.9944903
## 7 9 14 9.642857 0.9287827
## 8 10 14 9.428571 1.3985864
## 9 11 13 11.230769 1.7394370
## 10 12 11 12.545455 2.8412545
## 11 13 18 13.722222 1.9942728
## 12 14 15 14.800000 0.7745967
## 13 15 13 15.461538 1.6641006
## 14 16 11 16.636364 2.8025962
## 15 17 13 18.230769 3.1132471
## 16 18 13 18.230769 3.1132471
## 17 19 12 20.000000 2.3354968
## 18 20 11 19.909091 2.4271195
## 19 21 1 15.000000 NA
addmargins(table(schour$EDAD.REAL, schour$Sexo))
##
## Hombre Mujer Sum
## 3 4 1 5
## 4 6 6 12
## 5 2 3 5
## 6 6 7 13
## 7 6 6 12
## 8 6 8 14
## 9 5 9 14
## 10 5 9 14
## 11 3 10 13
## 12 7 4 11
## 13 11 7 18
## 14 5 10 15
## 15 4 9 13
## 16 6 5 11
## 17 8 5 13
## 18 6 7 13
## 19 3 9 12
## 20 4 7 11
## 21 0 1 1
## Sum 97 123 220
Para todos
fit <- lm(schour$EDAD.REAL~schour$Edad.dentaria.segĂșn.SM)
fit
##
## Call:
## lm(formula = schour$EDAD.REAL ~ schour$Edad.dentaria.segĂșn.SM)
##
## Coefficients:
## (Intercept) schour$Edad.dentaria.segĂșn.SM
## 1.1037 0.8712
summary(fit)
##
## Call:
## lm(formula = schour$EDAD.REAL ~ schour$Edad.dentaria.segĂșn.SM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3981 -1.1712 -0.1712 0.8288 6.8288
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.10374 0.32335 3.413 0.000765 ***
## schour$Edad.dentaria.segĂșn.SM 0.87116 0.02389 36.462 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.823 on 218 degrees of freedom
## Multiple R-squared: 0.8591, Adjusted R-squared: 0.8585
## F-statistic: 1330 on 1 and 218 DF, p-value: < 2.2e-16
scatterplot(schour$EDAD.REAL ~ schour$Edad.dentaria.segĂșn.SM,
main = "Edad cronolĂłgica versus edad dentaria Schour y Massler",
xlab = "Edad cronolĂłgica", ylab = "Edad dentaria segĂșn Schour y Massler")

Por sexo
Hombres
##
## Call:
## lm(formula = schour_h$EDAD.REAL ~ schour_h$Edad.dentaria.segĂșn.SM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0487 -1.0886 -0.1994 0.9114 5.0067
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.25484 0.43373 2.893 0.00473 **
## schour_h$Edad.dentaria.segĂșn.SM 0.84923 0.03233 26.270 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.715 on 95 degrees of freedom
## Multiple R-squared: 0.879, Adjusted R-squared: 0.8777
## F-statistic: 690.1 on 1 and 95 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = schour_h$EDAD.REAL ~ schour_h$Edad.dentaria.segĂșn.SM)
##
## Coefficients:
## (Intercept) schour_h$Edad.dentaria.segĂșn.SM
## 1.2548 0.8492

Mujeres
##
## Call:
## lm(formula = schour_m$EDAD.REAL ~ schour_m$Edad.dentaria.segĂșn.SM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6493 -0.9672 -0.3083 0.6917 6.6917
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.95568 0.47460 2.014 0.0463 *
## schour_m$Edad.dentaria.segĂșn.SM 0.89017 0.03483 25.555 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.907 on 121 degrees of freedom
## Multiple R-squared: 0.8437, Adjusted R-squared: 0.8424
## F-statistic: 653.1 on 1 and 121 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = schour_m$EDAD.REAL ~ schour_m$Edad.dentaria.segĂșn.SM)
##
## Coefficients:
## (Intercept) schour_m$Edad.dentaria.segĂșn.SM
## 0.9557 0.8902

ComparaciĂłn entre h y m
## Warning in anova.lmlist(object, ...): models with response '"schour_h
## $EDAD.REAL"' removed because response differs from model 1
## Analysis of Variance Table
##
## Response: schour_m$EDAD.REAL
## Df Sum Sq Mean Sq F value Pr(>F)
## schour_m$Edad.dentaria.segĂșn.SM 1 2375.54 2375.54 653.08 < 2.2e-16 ***
## Residuals 121 440.13 3.64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CorrelaciĂłn por edad
Igual o menos de 8
##
## 3 4 5 6 7 8 9 10
## 3 3 2 0 0 0 0 0 0
## 4 0 5 4 1 1 1 0 0
## 5 0 0 2 3 0 0 0 0
## 6 0 0 0 4 8 1 0 0
## 7 0 0 0 0 6 4 2 0
## 8 0 0 0 0 4 3 6 1
##
## Call:
## lm(formula = schour_3a8$EDAD.REAL ~ schour_3a8$Edad.dentaria.segĂșn.SM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.08665 -0.45210 -0.00027 0.54790 1.73062
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.54844 0.43362 1.265 0.211
## schour_3a8$Edad.dentaria.segĂșn.SM 0.81728 0.06364 12.842 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8603 on 59 degrees of freedom
## Multiple R-squared: 0.7365, Adjusted R-squared: 0.7321
## F-statistic: 164.9 on 1 and 59 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = schour_3a8$EDAD.REAL ~ schour_3a8$Edad.dentaria.segĂșn.SM)
##
## Coefficients:
## (Intercept) schour_3a8$Edad.dentaria.segĂșn.SM
## 0.5484 0.8173

de 9 a 11
##
## 6 7 8 9 10 11 12 15
## 9 0 0 0 8 4 1 1 0
## 10 1 0 1 5 5 1 1 0
## 11 0 1 0 0 1 6 4 1
##
## Call:
## lm(formula = schour_9a11$EDAD.REAL ~ schour_9a11$Edad.dentaria.segĂșn.SM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3867 -0.7467 0.0400 0.6133 1.6800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.82667 0.77856 10.053 2.2e-12
## schour_9a11$Edad.dentaria.segĂșn.SM 0.21333 0.07639 2.793 0.00806
##
## (Intercept) ***
## schour_9a11$Edad.dentaria.segĂșn.SM **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7592 on 39 degrees of freedom
## Multiple R-squared: 0.1667, Adjusted R-squared: 0.1453
## F-statistic: 7.799 on 1 and 39 DF, p-value: 0.008057
##
## Call:
## lm(formula = schour_9a11$EDAD.REAL ~ schour_9a11$Edad.dentaria.segĂșn.SM)
##
## Coefficients:
## (Intercept) schour_9a11$Edad.dentaria.segĂșn.SM
## 7.8267 0.2133

de 12 a 21
##
## 9 10 11 12 15 21
## 12 0 0 3 7 0 1
## 13 1 1 0 4 12 0
## 14 0 0 0 1 14 0
## 15 0 0 0 0 12 1
## 16 0 0 0 0 8 3
## 17 0 0 0 0 6 7
## 18 0 0 0 0 6 7
## 19 0 0 0 0 2 10
## 20 0 0 0 0 2 9
## 21 0 0 0 0 1 0
##
## Call:
## lm(formula = schour_12a21$EDAD.REAL ~ schour_12a21$Edad.dentaria.segĂșn.SM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.3163 -1.3163 -0.2004 0.9155 5.9155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.00517 0.84249 8.315 2e-13
## schour_12a21$Edad.dentaria.segĂșn.SM 0.53862 0.05022 10.725 <2e-16
##
## (Intercept) ***
## schour_12a21$Edad.dentaria.segĂșn.SM ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.84 on 116 degrees of freedom
## Multiple R-squared: 0.4979, Adjusted R-squared: 0.4935
## F-statistic: 115 on 1 and 116 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = schour_12a21$EDAD.REAL ~ schour_12a21$Edad.dentaria.segĂșn.SM)
##
## Coefficients:
## (Intercept) schour_12a21$Edad.dentaria.segĂșn.SM
## 7.0052 0.5386
## Warning in smoother(.x, .y, col = col[2], log.x = logged("x"), log.y =
## logged("y"), : could not fit smooth

##
## Welch Two Sample t-test
##
## data: schour$Edad.dentaria.segĂșn.SM and schour$EDAD.REAL
## t = 1.0672, df = 436.33, p-value = 0.2864
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4284364 1.4466183
## sample estimates:
## mean of x mean of y
## 12.51818 12.00909
