Statistical Methods for Reliability Data

Chapter 2 - Models, Censoring, and Likelihood for Failure-Time Data

W. Q. Meeker, L. A. Escobar, and J. K. Freels

12 October 2016

OVERVIEW

This Chapter Explains...

2.1.1 - Failure Time Distribution Functions

Figure 2.1 Distribution Plots For \(T \sim WEIB(1.7,1)\)

2.2 - MODELS FOR DISCRETE DATA FROM A CONTINUOUS PROCESS

Understanding failure

2.2.1 - Multinomial Failure Time Model

Real world reliability data

\[(t_0,t_1], (t_1,t_2],...,(t_{m-1},t_m],(t_m,t_{m+1}),\;\;\;\;\; t_0=0, t_{m+1}=\infty\]

Multinomial Reliability Estimation

\[f(n,\pi_{_{1}},...,\pi_{_{m+1}}|d_{_{1}},...,d_{_{m+1}})=\frac{n!}{d_1!,...,d_{m+1}!}\pi_{_{1}}^{d_{1}},...,\pi_{_{m+1}}^{d_{m+1}}\]

Figure 2.5 - Relationship between \(\pi_{i}\) and \(F(t)\)

Multinomial Survival Function

\[\displaystyle S(t_i)=P(T>t_i)=1-F(t_i)=\sum_{j=i+1}^{m+1}\pi_j\]

In-Class example - multinomial failure time model

\[\displaystyle p_i=P(t_{i-1}<T\le t_{i}|T>t_{i-1})=\frac{F(t_i)-F(t_{i-1})}{1-F(t_{i-1})}=\frac{\pi_{i}}{S(t_{i-1})}\]

2.2.2 - Multinomial CDF

\[\displaystyle S(t_{i})=\prod_{j=1}^{i}[1-p_{j}], i=1,...,m+1.\]

\[\displaystyle F(t_{i})=1-\prod_{j=1}^{i}[1-p_{j}]=\sum_{j=1}^{i}[\pi_{j}], i=1,...,m+1.\]

Example 2.8 - Computation of \(F(t_i), S(t_i), \pi_i\) and \(p_i\)

\(i\) \(t_{i}\) \(F(t_{i})\) \(S(t_{i})\) \(\pi_{i}\) \(p_{i}\) \(1-p_{i}\)
0 0.0 0.000 1.000
1 0.5 0.265 0.735 0.265 0.265 0.735
2 1.0 0.632 0.368 0.367 0.500 0.500
3 1.5 0.864 0.136 0.231 0.629 0.371
4 2.0 0.961 .0388 .0967 0.715 0.285
5 \(\infty\) 1.000 .0000 .0388 1.000 0.000
1.000

\[ \begin{aligned} F(0.5)&=1-\exp\left[-\left(\frac{0.5}{1}\right)^{1.7}\right]=\underline{0.2649275}\\\\\\ S(0.5)&=1-F(0.5)=\underline{0.7350725}\\\\\\ \pi_i&=F(t_i)-F(t_{i-1})=F(0.5)-F(0)=\underline{0.2649275}\\\\\\ p_i&=\frac{\pi_i}{S(t_{i-1})}=\frac{F(0.5)-F(0)}{S(0)}=\frac{0.2649275}{1}=\underline{0.2649275} \end{aligned} \]

\[ \begin{aligned} F(1)&=1-\exp\left[-\left(\frac{1}{1}\right)^{1.7}\right]=\underline{0.6321206}\\\\\\ S(1)&=1-F(1)=\underline{0.3678794}\\\\\\ \pi_i&=F(t_i)-F(t_{i-1})=F(1)-F(0.5)=\underline{0.3671931}\\\\\\ p_i&=\frac{\pi_i}{S(t_{i-1})}=\frac{F(1)-F(0.5)}{S(0.5)}=\frac{0.3671931}{0.7350725}=\underline{0.4995331} \end{aligned} \]

2.3 - CENSORING

2.3.1 - Censoring Mechanisms

Types of Right Censoring

Other Types Of Censoring

Time censored test data (Type I) may be further sub-divided according to

2.3.2 - Important Assumptions On Censoring Mechanisms

Independent vs. Dependent Censoring

In-Class Example: Independent & Dependent Censoring

2.4 - LIKELIHOOD

The Likelihood Function \(\mathscr{L}(\theta|\mathbf{t})\) And The PDF \(f(\mathbf{t}|\theta)\)

The figure below shows the result of this simulation in two separate plots

What's The Point?

2.4.1 - Likelihood-Based Statistical Methods

\[t_{1},t_{2},...,t_{n} \sim i.i.d. F(t|\mathbf{\theta}=\theta_{1},...,\theta_{n})\]

\[\mathscr{L_i}(\mathbf{\theta}|data_i)=f(data_i|\mathbf{\theta})=f(t_{i}|\mathbf{\theta})\]

The total likelihood is equal to the joint probability of the data

\[\mathscr{L}(\theta|DATA)=C\prod_{i=1}^{n} \mathscr{L}_{i}(\theta|data_i)=\prod_{i=1}^{n}f(t_{i}|\theta)\]

Likelihood Example

 [1] 11.3320098  7.4660938  3.8889996 13.0314761  9.8971047 11.8703029
 [7]  7.2016601  7.1390631 14.0791268  2.2901230 14.2079391  7.1940855
[13] 14.0213653  7.0142401 11.5523583  3.6210279 12.8739551  4.1321127
[19] 12.8495079  7.6663446 15.4626644  9.9028315  7.3127562 10.8901172
[25]  9.9988580 10.9927350  0.4339705  6.1634816  5.2514609 11.3828036

\[f(t)=\frac{1}{\theta}\exp^{-\left(\frac{t}{\theta}\right)}\]

\[\prod_{i=1}^{30}f(t_{i}|\theta)=\left(\frac{1}{\theta}\right)^{30}\exp{\left(-\frac{\sum_{i=1}^{30}t_{i}}{\theta}\right)}\]

[1] 1.884537
[1] 1.884536
[1] 1.884536

Figure 2.6 - Likelihood contributions

2.4.3 - Contributions To The Likelihood Function

Table 2.2 - Likelihood contributions for life-table data

Censoring type Range Likelihood
\(d_{i}\) observations interval censored in \(t_{i-1}\) and \(t_{i}\) \(t_{i-1}<T\le t_{i}\) \([F(t_{i})-F(t_{i-1})]^{d_{i}}\)
\(l_{i}\) observations left censored at \(t_{i}\) \(T\le t_{i}\) \([F(t_{i})]^{l_{i}}\)
\(r_{i}\) observations right censored at \(t_{i}\) \(T>t_{i}\) \([1-F(t_{i})]^{r_{i}}\)

\[ \begin{aligned} \mathscr{L}(\theta|DATA)&=C\prod_{i=1}^{n} \mathscr{L}_{i}(\theta|data_i)\\ &=C\prod_{i=1}^{m+1}[F(t_{i})]^{l_{i}}[F(t_{i})-F(t_{i-1})]^{d_{i}}[1-F(t_{i})]^{r_{i}} \end{aligned} \]

2.4.4 - Form Of The Constant Term \(C\)

\[\mathcal{C}=\frac{n!}{d_1!...d_{m+1}!}\]

2.4.5 - Likelihood Terms For General Reliability Data

2.4.6 - Other Likelihood Terms