Read in the text file:
chessinfo <- readLines('chessinfo.txt', warn = FALSE)
#I get a warning message when this line runs so I added the warn component to eliminate the warning.
head(chessinfo)
## [1] "-----------------------------------------------------------------------------------------"
## [2] " Pair | Player Name |Total|Round|Round|Round|Round|Round|Round|Round| "
## [3] " Num | USCF ID / Rtg (Pre->Post) | Pts | 1 | 2 | 3 | 4 | 5 | 6 | 7 | "
## [4] "-----------------------------------------------------------------------------------------"
## [5] " 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4|"
## [6] " ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B |W |"
Once the file has been loaded, we will start manipulating our data by extracting all the pertinent information such as player’s names, state and opponent information using str_extract_all().
chessinfo <- chessinfo[-c(1:4)]
l <- length(chessinfo)
row.one <- as.factor(chessinfo[seq(1,l,3)])
#we have to create a subset that contains the names
head(row.one)
## [1] 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4|
## [2] 2 | DAKSHESH DARURI |6.0 |W 63|W 58|L 4|W 17|W 16|W 20|W 7|
## [3] 3 | ADITYA BAJAJ |6.0 |L 8|W 61|W 25|W 21|W 11|W 13|W 12|
## [4] 4 | PATRICK H SCHILLING |5.5 |W 23|D 28|W 2|W 26|D 5|W 19|D 1|
## [5] 5 | HANSHI ZUO |5.5 |W 45|W 37|D 12|D 13|D 4|W 14|W 17|
## [6] 6 | HANSEN SONG |5.0 |W 34|D 29|L 11|W 35|D 10|W 27|W 21|
## 64 Levels: 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4| ...
row.two <- as.factor(chessinfo[seq(2,l,3)])
#this will contain all the alternate row information, basically just dividing up by every other row
head(row.two)
## [1] ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B |W |
## [2] MI | 14598900 / R: 1553 ->1663 |N:2 |B |W |B |W |B |W |B |
## [3] MI | 14959604 / R: 1384 ->1640 |N:2 |W |B |W |B |W |B |W |
## [4] MI | 12616049 / R: 1716 ->1744 |N:2 |W |B |W |B |W |B |B |
## [5] MI | 14601533 / R: 1655 ->1690 |N:2 |B |W |B |W |B |W |B |
## [6] OH | 15055204 / R: 1686 ->1687 |N:3 |W |B |W |B |B |W |B |
## 64 Levels: MI | 10131499 / R: 1610 ->1618 |N:3 |W |B |W |W |B |B |W | ...
player.name <- str_trim(str_extract(row.one, "(\\w+\\s){2,3}"))
#this will extract all words with 2 or more letters, with a space and up to 3 words and then it str_trim will trim down to a new string.
head(player.name)
## [1] "GARY HUA" "DAKSHESH DARURI" "ADITYA BAJAJ"
## [4] "PATRICK H SCHILLING" "HANSHI ZUO" "HANSEN SONG"
scores <- as.double(unlist(str_extract_all(row.one, "[:digit:][.][:digit:]")))
#this will extract all numbers in the format x.x and sets them as doubles
head(scores)
## [1] 6.0 6.0 6.0 5.5 5.5 5.0
opponent <- str_extract_all(row.one, "[:digit:]+?\\|") #this is extract all digits followed by |
opponent <- str_extract_all(opponent, "\\d+")
head(opponent)
## [[1]]
## [1] "39" "21" "18" "14" "7" "12" "4"
##
## [[2]]
## [1] "63" "58" "4" "17" "16" "20" "7"
##
## [[3]]
## [1] "8" "61" "25" "21" "11" "13" "12"
##
## [[4]]
## [1] "23" "28" "2" "26" "5" "19" "1"
##
## [[5]]
## [1] "45" "37" "12" "13" "4" "14" "17"
##
## [[6]]
## [1] "34" "29" "11" "35" "10" "27" "21"
states <- str_extract(row.two, "\\w+")
head(states)
## [1] "ON" "MI" "MI" "MI" "MI" "OH"
pre.rating <- str_extract(row.two, "[^[:digit:]][:digit:]{1,4}[^[:digit:]]")
pre.rating <- str_extract(pre.rating, "\\d+")
#I initially tried code that would extract all four digit numbers with spaces before and after but that didn't take into account elements such as 955P11. This approach worked much better
head(pre.rating)
## [1] "1794" "1553" "1384" "1716" "1655" "1686"
Now that we have the names, states, scores, and pre-rating extracted, we need to calculated the average opponent pre-rating. We will use a loop to do this.
average.preRating <- 0
for (i in 1:length(player.name)){
average.preRating[i] <- round(mean(as.numeric(pre.rating[as.numeric(unlist(opponent[i]))]), na.rm = TRUE, digits = 0))
}
head(average.preRating)
## [1] 1605 1469 1564 1574 1501 1519
Finally, I will combine all the parts into a data frame, rename the columns and convert to a table.
chess.output <- data.frame(player.name, states, scores, pre.rating, average.preRating)
names(chess.output) <- c("Player's Name","State", "Score", "Pre Rating","Ave.Opp.Pre Rating")
chess.output
## Player's Name State Score Pre Rating Ave.Opp.Pre Rating
## 1 GARY HUA ON 6.0 1794 1605
## 2 DAKSHESH DARURI MI 6.0 1553 1469
## 3 ADITYA BAJAJ MI 6.0 1384 1564
## 4 PATRICK H SCHILLING MI 5.5 1716 1574
## 5 HANSHI ZUO MI 5.5 1655 1501
## 6 HANSEN SONG OH 5.0 1686 1519
## 7 GARY DEE SWATHELL MI 5.0 1649 1372
## 8 EZEKIEL HOUGHTON MI 5.0 1641 1468
## 9 STEFANO LEE ON 5.0 1411 1523
## 10 ANVIT RAO MI 5.0 1365 1554
## 11 CAMERON WILLIAM MC MI 4.5 1712 1468
## 12 KENNETH J TACK MI 4.5 1663 1506
## 13 TORRANCE HENRY JR MI 4.5 1666 1498
## 14 BRADLEY SHAW MI 4.5 1610 1515
## 15 ZACHARY JAMES HOUGHTON MI 4.5 1220 1484
## 16 MIKE NIKITIN MI 4.0 1604 1386
## 17 RONALD GRZEGORCZYK MI 4.0 1629 1499
## 18 DAVID SUNDEEN MI 4.0 1600 1480
## 19 DIPANKAR ROY MI 4.0 1564 1426
## 20 JASON ZHENG MI 4.0 1595 1411
## 21 DINH DANG BUI ON 4.0 1563 1470
## 22 EUGENE L MCCLURE MI 4.0 1555 1300
## 23 ALAN BUI ON 4.0 1363 1214
## 24 MICHAEL R ALDRICH MI 4.0 1229 1357
## 25 LOREN SCHWIEBERT MI 3.5 1745 1363
## 26 MAX ZHU ON 3.5 1579 1507
## 27 GAURAV GIDWANI MI 3.5 1552 1222
## 28 SOFIA ADINA MI 3.5 1507 1522
## 29 CHIEDOZIE OKORIE MI 3.5 1602 1314
## 30 GEORGE AVERY JONES ON 3.5 1522 1144
## 31 RISHI SHETTY MI 3.5 1494 1260
## 32 JOSHUA PHILIP MATHEWS ON 3.5 1441 1379
## 33 JADE GE MI 3.5 1449 1277
## 34 MICHAEL JEFFERY THOMAS MI 3.5 1399 1375
## 35 JOSHUA DAVID LEE MI 3.5 1438 1150
## 36 SIDDHARTH JHA MI 3.5 1355 1388
## 37 AMIYATOSH PWNANANDAM MI 3.5 980 1385
## 38 BRIAN LIU MI 3.0 1423 1539
## 39 JOEL R HENDON MI 3.0 1436 1430
## 40 FOREST ZHANG MI 3.0 1348 1391
## 41 KYLE WILLIAM MURPHY MI 3.0 1403 1248
## 42 JARED GE MI 3.0 1332 1150
## 43 ROBERT GLEN VASEY MI 3.0 1283 1107
## 44 JUSTIN D SCHILLING MI 3.0 1199 1327
## 45 DEREK YAN MI 3.0 1242 1152
## 46 JACOB ALEXANDER LAVALLEY MI 3.0 377 1358
## 47 ERIC WRIGHT MI 2.5 1362 1392
## 48 DANIEL KHAIN MI 2.5 1382 1356
## 49 MICHAEL J MARTIN MI 2.5 1291 1286
## 50 SHIVAM JHA MI 2.5 1056 1296
## 51 TEJAS AYYAGARI MI 2.5 1011 1356
## 52 ETHAN GUO MI 2.5 935 1495
## 53 JOSE C YBARRA MI 2.0 1393 1345
## 54 LARRY HODGE MI 2.0 1270 1206
## 55 ALEX KONG MI 2.0 1186 1406
## 56 MARISA RICCI MI 2.0 1153 1414
## 57 MICHAEL LU MI 2.0 1092 1363
## 58 VIRAJ MOHILE MI 2.0 917 1391
## 59 SEAN M MC MI 2.0 853 1319
## 60 JULIA SHEN MI 1.5 967 1330
## 61 JEZZEL FARKAS ON 1.5 955 1327
## 62 ASHWIN BALAJI MI 1.0 1530 1186
## 63 THOMAS JOSEPH HOSMER MI 1.0 1175 1350
## 64 BEN LI MI 1.0 1163 1263
knitr::kable(chess.output)
GARY HUA |
ON |
6.0 |
1794 |
1605 |
DAKSHESH DARURI |
MI |
6.0 |
1553 |
1469 |
ADITYA BAJAJ |
MI |
6.0 |
1384 |
1564 |
PATRICK H SCHILLING |
MI |
5.5 |
1716 |
1574 |
HANSHI ZUO |
MI |
5.5 |
1655 |
1501 |
HANSEN SONG |
OH |
5.0 |
1686 |
1519 |
GARY DEE SWATHELL |
MI |
5.0 |
1649 |
1372 |
EZEKIEL HOUGHTON |
MI |
5.0 |
1641 |
1468 |
STEFANO LEE |
ON |
5.0 |
1411 |
1523 |
ANVIT RAO |
MI |
5.0 |
1365 |
1554 |
CAMERON WILLIAM MC |
MI |
4.5 |
1712 |
1468 |
KENNETH J TACK |
MI |
4.5 |
1663 |
1506 |
TORRANCE HENRY JR |
MI |
4.5 |
1666 |
1498 |
BRADLEY SHAW |
MI |
4.5 |
1610 |
1515 |
ZACHARY JAMES HOUGHTON |
MI |
4.5 |
1220 |
1484 |
MIKE NIKITIN |
MI |
4.0 |
1604 |
1386 |
RONALD GRZEGORCZYK |
MI |
4.0 |
1629 |
1499 |
DAVID SUNDEEN |
MI |
4.0 |
1600 |
1480 |
DIPANKAR ROY |
MI |
4.0 |
1564 |
1426 |
JASON ZHENG |
MI |
4.0 |
1595 |
1411 |
DINH DANG BUI |
ON |
4.0 |
1563 |
1470 |
EUGENE L MCCLURE |
MI |
4.0 |
1555 |
1300 |
ALAN BUI |
ON |
4.0 |
1363 |
1214 |
MICHAEL R ALDRICH |
MI |
4.0 |
1229 |
1357 |
LOREN SCHWIEBERT |
MI |
3.5 |
1745 |
1363 |
MAX ZHU |
ON |
3.5 |
1579 |
1507 |
GAURAV GIDWANI |
MI |
3.5 |
1552 |
1222 |
SOFIA ADINA |
MI |
3.5 |
1507 |
1522 |
CHIEDOZIE OKORIE |
MI |
3.5 |
1602 |
1314 |
GEORGE AVERY JONES |
ON |
3.5 |
1522 |
1144 |
RISHI SHETTY |
MI |
3.5 |
1494 |
1260 |
JOSHUA PHILIP MATHEWS |
ON |
3.5 |
1441 |
1379 |
JADE GE |
MI |
3.5 |
1449 |
1277 |
MICHAEL JEFFERY THOMAS |
MI |
3.5 |
1399 |
1375 |
JOSHUA DAVID LEE |
MI |
3.5 |
1438 |
1150 |
SIDDHARTH JHA |
MI |
3.5 |
1355 |
1388 |
AMIYATOSH PWNANANDAM |
MI |
3.5 |
980 |
1385 |
BRIAN LIU |
MI |
3.0 |
1423 |
1539 |
JOEL R HENDON |
MI |
3.0 |
1436 |
1430 |
FOREST ZHANG |
MI |
3.0 |
1348 |
1391 |
KYLE WILLIAM MURPHY |
MI |
3.0 |
1403 |
1248 |
JARED GE |
MI |
3.0 |
1332 |
1150 |
ROBERT GLEN VASEY |
MI |
3.0 |
1283 |
1107 |
JUSTIN D SCHILLING |
MI |
3.0 |
1199 |
1327 |
DEREK YAN |
MI |
3.0 |
1242 |
1152 |
JACOB ALEXANDER LAVALLEY |
MI |
3.0 |
377 |
1358 |
ERIC WRIGHT |
MI |
2.5 |
1362 |
1392 |
DANIEL KHAIN |
MI |
2.5 |
1382 |
1356 |
MICHAEL J MARTIN |
MI |
2.5 |
1291 |
1286 |
SHIVAM JHA |
MI |
2.5 |
1056 |
1296 |
TEJAS AYYAGARI |
MI |
2.5 |
1011 |
1356 |
ETHAN GUO |
MI |
2.5 |
935 |
1495 |
JOSE C YBARRA |
MI |
2.0 |
1393 |
1345 |
LARRY HODGE |
MI |
2.0 |
1270 |
1206 |
ALEX KONG |
MI |
2.0 |
1186 |
1406 |
MARISA RICCI |
MI |
2.0 |
1153 |
1414 |
MICHAEL LU |
MI |
2.0 |
1092 |
1363 |
VIRAJ MOHILE |
MI |
2.0 |
917 |
1391 |
SEAN M MC |
MI |
2.0 |
853 |
1319 |
JULIA SHEN |
MI |
1.5 |
967 |
1330 |
JEZZEL FARKAS |
ON |
1.5 |
955 |
1327 |
ASHWIN BALAJI |
MI |
1.0 |
1530 |
1186 |
THOMAS JOSEPH HOSMER |
MI |
1.0 |
1175 |
1350 |
BEN LI |
MI |
1.0 |
1163 |
1263 |