1 Introduction

Soybean target spot (TS) caused by Corynespora cassiicola has been considered a disease of limited importance in Brazil since it first report in 1976. However, due the massive adoption of no-till cultivation practices and the sowing of susceptible cultivars, in recent years this disease has spread throughout the Brazilian soybean-growing area with a considerably incidence.

By the moment, there is not a study quantifying the relationship between soybean yield (W, kg/ha) and target spot severity (TSs) in Brazil combining several growing seasons.

Our main objectives in this work were: using meta-analytic techniques

  1. estimate effect size of metrics that characterize the relationship W~TSs, and

  2. to identify variables that can moderate the effects in case of significant heterogeneity among studies.

A total of 33 Uniform Fungicide Trials of TS carried out across five brazilian states (Goiás, Mato Grosso, Mato Grosso do Sul, Paraná, and Tocantins) during four growing seasons (2012-2015, years of harvesting) was available to study the relationship W~TSs.

Each of the 33 selected trials (i-studies) constituted an independent study for this analysis.

Three effect-sizes related to the relationship W~TSs were estimated for each study: Pearson’s r correlation coefficient (r); and both linear regression coefficients, the intercept (β0) and slope (β1). The robust dispersion estimator, interquartile range (IQR), also called the middle fifty, being equal to the difference between the upper and lower quartiles, IQR=Q3−Q1, was estimated for each parameter.

2 Effect size based on correlations

2.1 Dataset

r: Pearson’s r coefficients (estimated with n pairs of plots)

yi: Fisher’s z coefficients

vi: sampling variance (within-study variance for study (i))

wts: weights (1/vi, %)

##   study year state        cultivar Dis_level Class      r pairs      yi     vi      wts
## 1     1 2012    MT          TMG803     3High   Low -0.181    36 -0.1830 0.0303 2.867072
## 2     2 2012    MT          TMG803   2Medium  High -0.525    36 -0.5832 0.0303 2.867072
## 3     3 2012    MT          TMG803     3High  High -0.349    36 -0.3643 0.0303 2.867072
## 4     4 2012    MS        5G830_RR   2Medium   Low -0.186    36 -0.1882 0.0303 2.867072
## 5     5 2012    MS BMX_Potencia_RR   2Medium   Low -0.187    45 -0.1892 0.0238 3.649001
## 6     6 2012    MT          TMG803     3High   Low -0.493    36 -0.5400 0.0303 2.867072
  • Description of Pearson’s r
## [[1]]
## [1] "range: -0.9 to 0.15"
## 
## [[2]]
## [1] "median: -0.5"
## 
## [[3]]
## [1] "IQR: 0.4"
  • Description of Fisher’s z
## [[1]]
## [1] "range: -1.3 to 0.15"
## 
## [[2]]
## [1] "median: -0.54"
## 
## [[3]]
## [1] "IQR: 0.53"

The sampling distribution of the Pearson’s r correlation coefficients is typically very skewed. However, standard meta-analytic models assume that the sampling distribution of the outcome measure is (at least approximately) normal and that assumption is much more appropriate for the transformed Fisher’s z coefficient.

2.2 Random effect model

\[ \gamma_i = \mu + b_i + e \] where:

\(\gamma_i\) is the vector of estimated z;

\(\mu\) is the population average of z;

\(b_i\) is the estimated random effect of the i-study (between-study variance)

Random-effects model allows \(\mu_i\) to differ between studies under the assumption of a normal distribution around \(\mu\)

The i-studies included in the meta-analysis are assumed to be a random sample of the relevant distribution of effects, and the combined effect estimates the “mean effect” in this distribution (a weighted mean).

Hypothesis:

\(H_0 : \mu = 0\) ()

\(H_1 : \mu \neq 0\) ()

To test this hypothesis we compute Q, which is basically a weighted sum of squares (we compute the difference of every effect size from the mean effect size, square that difference, assign larger weights to more precise studies, and then sum these weighted values).

If the null hypothesis is true (that all the variation in effects is due to sampling error), the expected value of Q is equal to the number of studies minus 1 (here, 33-1 = 32).

## 
## Random-Effects Model (k = 33; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.087 (SE = 0.028)
## tau (square root of estimated tau^2 value):      0.294
## I^2 (total heterogeneity / total variability):   75.13%
## H^2 (total variability / sampling variability):  4.02
## 
## Test for Heterogeneity: 
## Q(df = 32) = 134.559, p-val < .001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##   -0.532    0.059   -9.001    <.001   -0.648   -0.417      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##        estimate ci.lb ci.ub
## tau^2      0.09  0.05  0.18
## tau        0.29  0.22  0.42
## I^2(%)    75.13 62.55 86.08
## H^2        4.02  2.67  7.18

The mean effect size is -0.532 (-0.648 to -0.417) and the observed Q value is 134.559. This is more than we would expect if the null is true (32). Therefore, we reject the null. We have evidence that the true effect size varies from study to study.

\(I^2\) = 75.13%. This tells us that about 75% of the variance that we see in the forest plot reflects difference in the true effect sizes, while the other 25% reflects sampling error. Importantly, \(I^2\) is a proportion – it tells us what proportion of the observed variance is real (if our esimates are correct) but does not tell us how much variance there is.

  • Random forest

  • Prediction intervals for z
##    pred    se  ci.lb  ci.ub  cr.lb cr.ub
##  -0.532 0.059 -0.648 -0.417 -1.121 0.056
  • Prediction intervals for r
##    pred  ci.lb  ci.ub  cr.lb cr.ub
##  -0.487 -0.571 -0.394 -0.808 0.056
  • Describe the eblups for the z vlaues
## [[1]]
## [1] "range: -1.1 to -0.01"
## 
## [[2]]
## [1] "median: -0.54"
## 
## [[3]]
## [1] "IQR: 0.39"

2.3 Mixed model - inclusion of moderator variables

\[ \gamma_i = \mu + b_i + \delta_k + e \] where:

\(\gamma_i\) is the vector of estimated z;

\(\mu\) is the population average of z;

\(b_i\) is the estimated random effect (perturbation) of the i-study.

\(\delta_k\) is the fixed effect of k-level of the moderator variable.

\(e\) is the residual

## # A tibble: 3 × 3
##          Moderator `Test of moderator`        R2
##              <chr>               <dbl>     <dbl>
## 1           Season        5.195488e-01  1.568190
## 2 Disease pressure        4.121975e-01  7.086112
## 3   Yield response        3.985073e-08 63.382219
  • Yield response -> significative moderator variable
## 
## Mixed-Effects Model (k = 33; tau^2 estimator: ML)
## 
##   logLik  deviance       AIC       BIC      AICc  
##   -0.431    57.281     6.862    11.352     7.690  
## 
## tau^2 (estimated amount of residual heterogeneity):     0.032 (SE = 0.015)
## tau (square root of estimated tau^2 value):             0.178
## I^2 (residual heterogeneity / unaccounted variability): 52.51%
## H^2 (unaccounted variability / sampling variability):   2.11
## R^2 (amount of heterogeneity accounted for):            63.38%
## 
## Test for Residual Heterogeneity: 
## QE(df = 31) = 69.546, p-val < .001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 30.157, p-val < .001
## 
## Model Results:
## 
##           estimate     se     zval   pval   ci.lb   ci.ub     
## intrcpt     -0.761  0.060  -12.719  <.001  -0.878  -0.644  ***
## ClassLow     0.470  0.086    5.492  <.001   0.303   0.638  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##         df     AIC     BIC    AICc   logLik     LRT   pval       QE  tau^2    R^2
## Full     3  6.8622 11.3517  7.6897  -0.4311                 69.5455 0.0317       
## Reduced  2 26.1847 29.1777 26.5847 -11.0924 21.3225 <.0001 134.5586 0.0866 63.38%

##      pred    se  pi.lb  pi.ub
## 1  -0.236 0.128 -0.487  0.015
## 2  -0.670 0.128 -0.921 -0.420
## 3  -0.558 0.128 -0.809 -0.308
## 4  -0.238 0.128 -0.489  0.013
## 5  -0.233 0.120 -0.467  0.002
## 6  -0.418 0.128 -0.669 -0.167
## 7  -0.301 0.128 -0.552 -0.050
## 8  -0.202 0.124 -0.445  0.041
## 9  -0.919 0.124 -1.162 -0.676
## 10 -0.911 0.124 -1.153 -0.668
## 11 -0.753 0.124 -0.996 -0.510
## 12 -0.575 0.124 -0.818 -0.332
## 13 -0.865 0.124 -1.107 -0.622
## 14 -0.541 0.124 -0.784 -0.298
## 15 -0.446 0.132 -0.705 -0.186
## 16 -0.312 0.128 -0.563 -0.061
## 17 -0.714 0.130 -0.969 -0.459
## 18 -0.273 0.128 -0.524 -0.022
## 19 -0.919 0.132 -1.178 -0.660
## 20 -0.772 0.131 -1.029 -0.515
## 21 -0.660 0.135 -0.924 -0.396
## 22 -0.755 0.128 -1.006 -0.505
## 23 -0.718 0.124 -0.961 -0.475
## 24 -0.573 0.124 -0.817 -0.330
## 25 -0.196 0.124 -0.439  0.048
## 26 -0.234 0.124 -0.477  0.009
## 27 -0.784 0.124 -1.027 -0.541
## 28 -0.456 0.124 -0.699 -0.213
## 29 -0.796 0.124 -1.039 -0.553
## 30 -0.054 0.124 -0.297  0.189
## 31 -0.186 0.124 -0.429  0.057
## 32 -0.293 0.124 -0.536 -0.050
## 33 -1.030 0.124 -1.273 -0.788
## [[1]]
## [1] "range: -0.6 to -0.28"
## 
## [[2]]
## [1] "median: -0.64"
## 
## [[3]]
## [1] "IQR: 0.36"
  • Fisher’s z - Output
##      pred     se   ci.lb   ci.ub   cr.lb   cr.ub
## 1 -0.2907 0.0613 -0.4108 -0.1705 -0.6599  0.0785
## 2 -0.7612 0.0598 -0.8785 -0.6439 -1.1294 -0.3929
## 3 -0.7612 0.0598 -0.8785 -0.6439 -1.1294 -0.3929
## 4 -0.2907 0.0613 -0.4108 -0.1705 -0.6599  0.0785
## 5 -0.2907 0.0613 -0.4108 -0.1705 -0.6599  0.0785
## 6 -0.2907 0.0613 -0.4108 -0.1705 -0.6599  0.0785
  • Pearson’s r - Output
##                  est        low         up
## ClassHigh -0.6417667 -0.7056489 -0.5675355
## ClassLow  -0.2827587 -0.3891921 -0.1688750

3 Effect size of linear regression parameters

3.1 Dataset

##   study Class   b0_est     b1_est     Varb0    Covb0b1     Varb1
## 1     1   Low 2898.754  -7.584689 63541.922 -1698.2064 50.193294
## 2     2  High 3927.619 -24.469702 40514.167 -1306.7423 46.393218
## 3     3  High 3251.294 -16.095129 51817.014 -1633.7182 55.069153
## 4     4   Low 3445.393  -4.360786  7543.201  -264.3786 15.526315
## 5     5   Low 4218.295  -9.249662 16681.045  -860.1509 55.137876
## 6     6   Low 3610.224  -7.227121  4751.120  -129.5709  4.781703

Description of the i-study intercepts and slopes

## [[1]]
## [1] "range: 1612.1 to 4849.9"
## 
## [[2]]
## [1] "median: 3601.63"
## 
## [[3]]
## [1] "IQR: 632.33"
## [[1]]
## [1] "range: -43.5 to 7"
## 
## [[2]]
## [1] "median: -16.07"
## 
## [[3]]
## [1] "IQR: 21.4"

Plot of individual linear regressions

3.2 Random model

Definiton of the model outcomes, moderator and var-cov

Statistics of the model

## Call:  mvmeta(formula = outcomes ~ 1, S = varcov, method = "ml", bscov = "un")
## 
## Multivariate random-effects meta-analysis
## Dimension: 2
## Estimation method: ML
## 
## Fixed-effects coefficients
##         Estimate  Std. Error     z  Pr(>|z|)  95%ci.lb  95%ci.ub     
## b0_est    3507.1       118.4  29.6       0.0    3275.1    3739.1  ***
## b1_est     -17.1         2.1  -8.0       0.0     -21.2     -12.9  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##  Structure: General positive-definite
##         Std. Dev    Corr
## b0_est     669.5  b0_est
## b1_est      11.0    -0.1
## 
## Multivariate Cochran Q-test for heterogeneity:
## Q = 11951.4 (df = 64), p-value = 0.0
## I-square statistic = 99.5%
## 
## 33 studies, 66 observations, 2 fixed and 3 random-effects parameters
## logLik     AIC     BIC  
## -392.1   794.3   805.2
## Multivariate Cochran Q-test for heterogeneity
## 
## Overall test: 
## Q = 11951.444 (df = 64), p-value = 0.000
## 
## Tests on single outcome parameters: 
##                Q  df  p-value     
## b0_est  2473.625  32    0.000  ***
## b1_est   537.313  32    0.000  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##             b0_est    b1_est
## b0_est 448202.7186 -753.4152
## b1_est   -753.4152  120.8191

Description of the EBLUPS

## [[1]]
## [1] "range: 1631.5 to 4617.21"
## 
## [[2]]
## [1] "median: 3601.49"
## 
## [[3]]
## [1] "IQR: 623.69"
## [[1]]
## [1] "range: -34 to -0.85"
## 
## [[2]]
## [1] "median: -16.11"
## 
## [[3]]
## [1] "IQR: 18.54"

Output table: fitted’s + random’s = EBLUPs

##    study b0_fitted b1_fitted   b0_random    b1_random  b0_blup     b1_blup
## 1      1  3507.093 -17.06217  -475.36741   5.72561309 3031.726 -11.3365557
## 12     2  3507.093 -17.06217   345.28735  -4.82988503 3852.380 -21.8920538
## 23     3  3507.093 -17.06217  -231.43229   0.20430500 3275.661 -16.8578638
## 28     4  3507.093 -17.06217   -37.48272  11.26598604 3469.610  -5.7961827
## 29     5  3507.093 -17.06217   734.09824   5.98100929 4241.191 -11.0811595
## 30     6  3507.093 -17.06217   111.79587   9.49762306 3618.889  -7.5645457
## 31     7  3507.093 -17.06217   357.98755   4.33421038 3865.081 -12.7279584
## 32     8  3507.093 -17.06217   409.43860  11.78264621 3916.532  -5.2795225
## 33     9  3507.093 -17.06217   212.81831  -5.34437451 3719.911 -22.4065433
## 2     10  3507.093 -17.06217   718.43690 -16.39223358 4225.530 -33.4544023
## 3     11  3507.093 -17.06217    95.09096   0.94826522 3602.184 -16.1139035
## 4     12  3507.093 -17.06217 -1875.54367  -0.01953077 1631.549 -17.0816995
## 5     13  3507.093 -17.06217  -174.94323 -16.25559327 3332.150 -33.3177620
## 6     14  3507.093 -17.06217 -1491.90434   1.79091819 2015.189 -15.2712506
## 7     15  3507.093 -17.06217   380.07254   5.92334730 3887.166 -11.1388215
## 8     16  3507.093 -17.06217    53.59440  10.71016860 3560.687  -6.3520002
## 9     17  3507.093 -17.06217   216.29994  -8.13095750 3723.393 -25.1931263
## 10    18  3507.093 -17.06217   337.30200   9.58276645 3844.395  -7.4794023
## 11    19  3507.093 -17.06217   879.70583 -12.13746833 4386.799 -29.1996371
## 13    20  3507.093 -17.06217  -265.70125 -16.89862558 3241.392 -33.9607943
## 14    21  3507.093 -17.06217 -1282.94604  -9.21226451 2224.147 -26.2744333
## 15    22  3507.093 -17.06217  -530.31966  -9.04505987 2976.773 -26.1072286
## 16    23  3507.093 -17.06217   337.16523 -11.76603735 3844.258 -28.8282061
## 17    24  3507.093 -17.06217  -592.26862   5.08484965 2914.824 -11.9773191
## 18    25  3507.093 -17.06217   820.49235  10.74000615 4327.585  -6.3221626
## 19    26  3507.093 -17.06217    68.08135  13.08604845 3575.174  -3.9761203
## 20    27  3507.093 -17.06217    94.40121  -9.80731869 3601.494 -26.8694874
## 21    28  3507.093 -17.06217   885.60670  -5.72552251 4392.700 -22.7876913
## 22    29  3507.093 -17.06217  1110.12198 -12.22309142 4617.215 -29.2852602
## 24    30  3507.093 -17.06217   -15.91517  16.21492923 3491.178  -0.8472395
## 25    31  3507.093 -17.06217  -334.43687  14.25731416 3172.656  -2.8048546
## 26    32  3507.093 -17.06217  -233.29116   6.48319622 3273.802 -10.5789725
## 27    33  3507.093 -17.06217  -626.24490  -5.82523977 2880.848 -22.8874085

Mean of random effects should be ~= 0

## [1] 7.267125e-15
## [1] 2.383972e-12
  • Damage coefficient for overall model
## [1] -0.49
  • Relative yield Loss at TSs=50
## [1] 24.5

Plot of fitted (and 95%CI) and study specific blups lines

## [[1]]
## NULL
## 
## [[2]]
## NULL

3.3 Mixed model - moderator variables (only the significative one)

## Call:  mvmeta(formula = outcomes ~ metacov, S = varcov, method = "ml")
## 
## Multivariate random-effects meta-regression
## Dimension: 2
## Estimation method: ML
## 
## Fixed-effects coefficients
## b0_est : 
##               Estimate  Std. Error        z  Pr(>|z|)   95%ci.lb   95%ci.ub     
## (Intercept)  3382.5607    161.9093  20.8917    0.0000  3065.2243  3699.8971  ***
## metacovLow    248.9863    232.0009   1.0732    0.2832  -205.7272   703.6997     
## b1_est : 
##              Estimate  Std. Error         z  Pr(>|z|)  95%ci.lb  95%ci.ub     
## (Intercept)  -25.9173      1.7016  -15.2314    0.0000  -29.2523  -22.5822  ***
## metacovLow    18.6306      2.2910    8.1321    0.0000   14.1404   23.1209  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##  Structure: General positive-definite
##         Std. Dev     Corr
## b0_est  657.6944   b0_est
## b1_est    4.4716  -0.5524
## 
## Multivariate Cochran Q-test for residual heterogeneity:
## Q = 10526.1480 (df = 62), p-value = 0.0000
## I-square statistic = 99.4%
## 
## 33 studies, 66 observations, 4 fixed and 3 random-effects parameters
##    logLik        AIC        BIC  
## -369.0428   752.0857   767.4132
##                      Estimate Std. Error          z     Pr(>|z|)   95%ci.lb   95%ci.ub
## b0_est.(Intercept) 3382.56073 161.909309  20.891700 0.000000e+00 3065.22431 3699.89714
## b0_est.metacovLow   248.98626 232.000932   1.073212 2.831759e-01 -205.72721  703.69973
## b1_est.(Intercept)  -25.91726   1.701569 -15.231388 0.000000e+00  -29.25227  -22.58224
## b1_est.metacovLow    18.63065   2.290993   8.132128 4.440892e-16   14.14038   23.12091
##            b0_est     b1_est
## b0_est  1.0000000 -0.5523883
## b1_est -0.5523883  1.0000000
##            b0_est      b1_est
## b0_est 432561.941 -1624.53412
## b1_est  -1624.534    19.99495

Improve model0 or over-parametrization?

##          df      AIC
## model_YR  7 752.0857
## model0    5 794.2754
##     b0_est    b1_est b0_est.1   b1_est.2 b0_est.2  b1_est.1
## 1 3631.547  -7.28661 3305.875  -4.279926 3957.219 -10.29329
## 2 3382.561 -25.91726 3065.224 -22.582243 3699.897 -29.25227

3.3.1 Relative yield loss for model with RY as moderator

##     b0_est    b1_est   b0_low    b1_low    b0_up      b1_up dam_coef   L50
## 1 3631.547  -7.28661 3305.875 -10.29329 3957.219  -4.279926    -0.20 -10.0
## 2 3382.561 -25.91726 3065.224 -29.25227 3699.897 -22.582243    -0.77 -38.5

Ouput table

##    study Class b0_fitted b1_fitted  b0_blup    b1_blup   b0_random   b1_random
## 1      1   Low  3631.547  -7.28661 2854.392  -5.876931  -777.15530  1.40967900
## 2      2  High  3382.561 -25.91726 3986.561 -26.795600   604.00076 -0.87834284
## 3      3  High  3382.561 -25.91726 3481.497 -23.951925    98.93621  1.96533212
## 4      4   Low  3631.547  -7.28661 3466.583  -5.589150  -164.96358  1.69745939
## 5      5   Low  3631.547  -7.28661 4212.545  -9.178439   580.99844 -1.89182923
## 6      6   Low  3631.547  -7.28661 3610.293  -7.227183   -21.25375  0.05942703
## 7      7   Low  3631.547  -7.28661 3737.203  -8.792558   105.65623 -1.50594786
## 8      8   Low  3631.547  -7.28661 3941.126  -6.279310   309.57943  1.00729980
## 9      9  High  3382.561 -25.91726 3780.192 -24.320062   397.63116  1.59719467
## 10    10  High  3382.561 -25.91726 4178.042 -31.764019   795.48143 -5.84676162
## 11    11  High  3382.561 -25.91726 3687.577 -20.405663   305.01639  5.51159415
## 12    12  High  3382.561 -25.91726 1653.034 -19.023039 -1729.52623  6.89421800
## 13    13  High  3382.561 -25.91726 3299.851 -29.400885   -82.70967 -3.48362836
## 14    14  High  3382.561 -25.91726 2053.870 -19.490996 -1328.69120  6.42626147
## 15    15   Low  3631.547  -7.28661 3872.037  -9.728736   240.49032 -2.44212623
## 16    16   Low  3631.547  -7.28661 3555.557  -6.158361   -75.98999  1.12824840
## 17    17  High  3382.561 -25.91726 3745.608 -27.490541   363.04709 -1.57328408
## 18    18   Low  3631.547  -7.28661 3840.426  -7.173270   208.87937  0.11334003
## 19    19  High  3382.561 -25.91726 4395.632 -30.178152  1013.07169 -4.26089480
## 20    20  High  3382.561 -25.91726 3048.987 -28.079063  -333.57383 -2.16180638
## 21    21  High  3382.561 -25.91726 2196.940 -23.111366 -1185.62097  2.80589081
## 22    22  High  3382.561 -25.91726 2970.991 -25.688776  -411.56952  0.22848146
## 23    23  High  3382.561 -25.91726 3845.121 -28.912922   462.56024 -2.99566450
## 24    24   Low  3631.547  -7.28661 2883.324 -10.184356  -748.22278 -2.89774609
## 25    25   Low  3631.547  -7.28661 4336.038  -7.791315   704.49095 -0.50470562
## 26    26   Low  3631.547  -7.28661 3579.760  -4.523661   -51.78687  2.76294855
## 27    27  High  3382.561 -25.91726 3607.815 -27.525757   225.25389 -1.60850038
## 28    28   Low  3631.547  -7.28661 4271.740 -13.505490   640.19307 -6.21888011
## 29    29  High  3382.561 -25.91726 4676.851 -31.081196  1294.29020 -5.16393927
## 30    30   Low  3631.547  -7.28661 3529.438  -4.185128  -102.10911  3.10148203
## 31    31   Low  3631.547  -7.28661 3184.282  -3.233679  -447.26485  4.05293121
## 32    32   Low  3631.547  -7.28661 3230.005  -7.158190  -401.54158  0.12841970
## 33    33  High  3382.561 -25.91726 2894.963 -23.373407  -487.59764  2.54384958
## [[1]]
## [1] "range: 1653 to 4676.85"
## 
## [[2]]
## [1] "median: 3607.81"
## 
## [[3]]
## [1] "IQR: 687.76"
## [[1]]
## [1] "range: -31.8 to -3.23"
## 
## [[2]]
## [1] "median: -19.02"
## 
## [[3]]
## [1] "IQR: 19.62"

Plot of fitted (and 95%CI) and study specific blups lines

## [[1]]
## NULL
## 
## [[2]]
## NULL
## [[1]]
## NULL
## 
## [[2]]
## NULL

Histograms