##install.packages("dplyr")
##install.packages("tidyr")
##install.packages("ggplot2")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
##.csv was created and uploaded to Github
epl <- read.csv("https://raw.githubusercontent.com/choudhury1023/Data-607/gh-pages/epl_data.csv", header = TRUE, stringsAsFactors = FALSE)
epl
## Team P W D L GF GA GD Pts PPG Wh Dh Lh GFh GAh Wa Da La
## 1 Manchester City 7 6 0 1 18 7 11 18 2.57 3 0 0 9 2 3 0 1
## 2 Tottenham 7 5 2 0 12 3 9 17 2.43 3 1 0 5 1 2 1 0
## 3 Arsenal 7 5 1 1 16 7 9 16 2.29 2 0 1 8 5 3 1 0
## 4 Liverpool 7 5 1 1 18 10 8 16 2.29 2 0 0 9 2 3 1 1
## 5 Everton 7 4 2 1 11 5 6 14 2.00 2 2 0 6 3 2 0 1
## 6 Manchester Utd 7 4 1 2 13 8 5 13 1.86 2 1 1 8 4 2 0 1
## 7 Chelsea 7 4 1 2 12 9 3 13 1.86 2 0 1 6 3 2 1 1
## 8 Crystal Palace 7 3 2 2 11 8 3 11 1.57 1 1 1 5 3 2 1 1
## 9 West Bromwich 7 2 3 2 8 7 1 9 1.29 1 1 1 5 4 1 2 1
## 10 Southampton 7 2 3 2 7 6 1 9 1.29 1 2 0 3 2 1 1 2
## 11 Watford 7 2 2 3 12 13 -1 8 1.14 1 1 2 7 8 1 1 1
## 12 Leicester City 7 2 2 3 8 11 -3 8 1.14 2 2 0 5 1 0 0 3
## 13 Bournemouth 7 2 2 3 6 11 -5 8 1.14 2 0 1 3 3 0 2 2
## 14 Burnley 7 2 1 4 5 9 -4 7 1.00 2 1 2 5 3 0 0 2
## 15 Hull City 7 2 1 4 7 14 -7 7 1.00 1 0 3 3 8 1 1 1
## 16 Middlesbrough 7 1 3 3 7 10 -3 6 0.86 0 1 2 3 5 1 2 1
## 17 Swansea City 7 1 1 5 6 12 -6 4 0.57 0 1 3 4 9 1 0 2
## 18 West Ham Utd 7 1 1 5 8 17 -9 4 0.57 1 1 2 4 8 0 0 3
## 19 Stoke City 7 0 3 4 5 16 -11 3 0.43 0 1 2 2 9 0 2 2
## 20 Sunderland 7 0 2 5 6 13 -7 2 0.29 0 1 3 4 9 0 1 2
## GFa GAa X
## 1 9 5 NA
## 2 7 2 NA
## 3 8 2 NA
## 4 9 8 NA
## 5 5 2 NA
## 6 5 4 NA
## 7 6 6 NA
## 8 6 5 NA
## 9 3 3 NA
## 10 4 4 NA
## 11 5 5 NA
## 12 3 10 NA
## 13 3 8 NA
## 14 0 6 NA
## 15 4 6 NA
## 16 4 5 NA
## 17 2 3 NA
## 18 4 9 NA
## 19 3 7 NA
## 20 2 4 NA
names(epl)
## [1] "Team" "P" "W" "D" "L" "GF" "GA" "GD" "Pts" "PPG"
## [11] "Wh" "Dh" "Lh" "GFh" "GAh" "Wa" "Da" "La" "GFa" "GAa"
## [21] "X"
epl1<- epl %>%
select(Team, GFh, GAh, GFa, GAa) %>%
rename(team = Team, goal_for_home = GFh, goal_against_home = GAh, goal_for_away = GFa, goal_against_away = GAa)
epl1
## team goal_for_home goal_against_home goal_for_away
## 1 Manchester City 9 2 9
## 2 Tottenham 5 1 7
## 3 Arsenal 8 5 8
## 4 Liverpool 9 2 9
## 5 Everton 6 3 5
## 6 Manchester Utd 8 4 5
## 7 Chelsea 6 3 6
## 8 Crystal Palace 5 3 6
## 9 West Bromwich 5 4 3
## 10 Southampton 3 2 4
## 11 Watford 7 8 5
## 12 Leicester City 5 1 3
## 13 Bournemouth 3 3 3
## 14 Burnley 5 3 0
## 15 Hull City 3 8 4
## 16 Middlesbrough 3 5 4
## 17 Swansea City 4 9 2
## 18 West Ham Utd 4 8 4
## 19 Stoke City 2 9 3
## 20 Sunderland 4 9 2
## goal_against_away
## 1 5
## 2 2
## 3 2
## 4 8
## 5 2
## 6 4
## 7 6
## 8 5
## 9 3
## 10 4
## 11 5
## 12 10
## 13 8
## 14 6
## 15 6
## 16 5
## 17 3
## 18 9
## 19 7
## 20 4
summary(epl1)
## team goal_for_home goal_against_home goal_for_away
## Length:20 Min. :2.00 Min. :1.00 Min. :0.0
## Class :character 1st Qu.:3.75 1st Qu.:2.75 1st Qu.:3.0
## Mode :character Median :5.00 Median :3.50 Median :4.0
## Mean :5.20 Mean :4.60 Mean :4.6
## 3rd Qu.:6.25 3rd Qu.:8.00 3rd Qu.:6.0
## Max. :9.00 Max. :9.00 Max. :9.0
## goal_against_away
## Min. : 2.00
## 1st Qu.: 3.75
## Median : 5.00
## Mean : 5.20
## 3rd Qu.: 6.25
## Max. :10.00
epl_tidy <- gather(epl1,"type", "goals", 2:5)
epl_tidy
## team type goals
## 1 Manchester City goal_for_home 9
## 2 Tottenham goal_for_home 5
## 3 Arsenal goal_for_home 8
## 4 Liverpool goal_for_home 9
## 5 Everton goal_for_home 6
## 6 Manchester Utd goal_for_home 8
## 7 Chelsea goal_for_home 6
## 8 Crystal Palace goal_for_home 5
## 9 West Bromwich goal_for_home 5
## 10 Southampton goal_for_home 3
## 11 Watford goal_for_home 7
## 12 Leicester City goal_for_home 5
## 13 Bournemouth goal_for_home 3
## 14 Burnley goal_for_home 5
## 15 Hull City goal_for_home 3
## 16 Middlesbrough goal_for_home 3
## 17 Swansea City goal_for_home 4
## 18 West Ham Utd goal_for_home 4
## 19 Stoke City goal_for_home 2
## 20 Sunderland goal_for_home 4
## 21 Manchester City goal_against_home 2
## 22 Tottenham goal_against_home 1
## 23 Arsenal goal_against_home 5
## 24 Liverpool goal_against_home 2
## 25 Everton goal_against_home 3
## 26 Manchester Utd goal_against_home 4
## 27 Chelsea goal_against_home 3
## 28 Crystal Palace goal_against_home 3
## 29 West Bromwich goal_against_home 4
## 30 Southampton goal_against_home 2
## 31 Watford goal_against_home 8
## 32 Leicester City goal_against_home 1
## 33 Bournemouth goal_against_home 3
## 34 Burnley goal_against_home 3
## 35 Hull City goal_against_home 8
## 36 Middlesbrough goal_against_home 5
## 37 Swansea City goal_against_home 9
## 38 West Ham Utd goal_against_home 8
## 39 Stoke City goal_against_home 9
## 40 Sunderland goal_against_home 9
## 41 Manchester City goal_for_away 9
## 42 Tottenham goal_for_away 7
## 43 Arsenal goal_for_away 8
## 44 Liverpool goal_for_away 9
## 45 Everton goal_for_away 5
## 46 Manchester Utd goal_for_away 5
## 47 Chelsea goal_for_away 6
## 48 Crystal Palace goal_for_away 6
## 49 West Bromwich goal_for_away 3
## 50 Southampton goal_for_away 4
## 51 Watford goal_for_away 5
## 52 Leicester City goal_for_away 3
## 53 Bournemouth goal_for_away 3
## 54 Burnley goal_for_away 0
## 55 Hull City goal_for_away 4
## 56 Middlesbrough goal_for_away 4
## 57 Swansea City goal_for_away 2
## 58 West Ham Utd goal_for_away 4
## 59 Stoke City goal_for_away 3
## 60 Sunderland goal_for_away 2
## 61 Manchester City goal_against_away 5
## 62 Tottenham goal_against_away 2
## 63 Arsenal goal_against_away 2
## 64 Liverpool goal_against_away 8
## 65 Everton goal_against_away 2
## 66 Manchester Utd goal_against_away 4
## 67 Chelsea goal_against_away 6
## 68 Crystal Palace goal_against_away 5
## 69 West Bromwich goal_against_away 3
## 70 Southampton goal_against_away 4
## 71 Watford goal_against_away 5
## 72 Leicester City goal_against_away 10
## 73 Bournemouth goal_against_away 8
## 74 Burnley goal_against_away 6
## 75 Hull City goal_against_away 6
## 76 Middlesbrough goal_against_away 5
## 77 Swansea City goal_against_away 3
## 78 West Ham Utd goal_against_away 9
## 79 Stoke City goal_against_away 7
## 80 Sunderland goal_against_away 4
ggplot(data = epl_tidy, aes(x = team, y = goals, fill = type))+ geom_bar(stat="identity", position="dodge") + ggtitle("Home and Away Goals") + ylab("Goals") + coord_flip()
##unable to reach a conclusion from the plot, further analysis required
epl_pct_home_for <- epl1 %>%
select(team, total_for_home = sum(goal_for_home), total_for_away = sum(goal_for_away)) %>%
mutate(pct_for_home = round(( total_for_home/ (total_for_home + total_for_away)) * 100))
epl_pct_home_for
## team total_for_home total_for_away pct_for_home
## 1 Manchester City 9 9 50
## 2 Tottenham 5 7 42
## 3 Arsenal 8 8 50
## 4 Liverpool 9 9 50
## 5 Everton 6 5 55
## 6 Manchester Utd 8 5 62
## 7 Chelsea 6 6 50
## 8 Crystal Palace 5 6 45
## 9 West Bromwich 5 3 62
## 10 Southampton 3 4 43
## 11 Watford 7 5 58
## 12 Leicester City 5 3 62
## 13 Bournemouth 3 3 50
## 14 Burnley 5 0 100
## 15 Hull City 3 4 43
## 16 Middlesbrough 3 4 43
## 17 Swansea City 4 2 67
## 18 West Ham Utd 4 4 50
## 19 Stoke City 2 3 40
## 20 Sunderland 4 2 67
summary(epl_pct_home_for)
## team total_for_home total_for_away pct_for_home
## Length:20 Min. :2.00 Min. :0.0 Min. : 40.00
## Class :character 1st Qu.:3.75 1st Qu.:3.0 1st Qu.: 44.50
## Mode :character Median :5.00 Median :4.0 Median : 50.00
## Mean :5.20 Mean :4.6 Mean : 54.45
## 3rd Qu.:6.25 3rd Qu.:6.0 3rd Qu.: 62.00
## Max. :9.00 Max. :9.0 Max. :100.00
nrow(filter(epl_pct_home_for, pct_for_home > 50))
## [1] 8
##8 teams out of 20 scores more than 50% of the goals at home with one team scoring all their goals at home
ggplot(data = epl_pct_home_for, aes(x = team, y = pct_for_home, fill = pct_for_home))+ geom_bar(stat="identity", position="dodge") + ggtitle("For Home Goal Percentage") + ylab("Percent")+ coord_flip()
epl_total_pct_home_for <- epl1 %>%
summarise(total_for_home = sum(goal_for_home), total_for_away = sum(goal_for_away)) %>%
mutate(pct_for_home = round(( total_for_home/ (total_for_home + total_for_away)) * 100))
epl_total_pct_home_for
## total_for_home total_for_away pct_for_home
## 1 104 92 53
##53% of the total "for" goals were scored at home
epl_pct_home_against <- epl1 %>%
select(team, total_against_home = sum(goal_against_home), total_against_away = sum(goal_against_away)) %>%
mutate(pct_against_home = round(( total_against_home/ (total_against_home + total_against_away)) * 100))
epl_pct_home_against
## team total_against_home total_against_away
## 1 Manchester City 2 5
## 2 Tottenham 1 2
## 3 Arsenal 5 2
## 4 Liverpool 2 8
## 5 Everton 3 2
## 6 Manchester Utd 4 4
## 7 Chelsea 3 6
## 8 Crystal Palace 3 5
## 9 West Bromwich 4 3
## 10 Southampton 2 4
## 11 Watford 8 5
## 12 Leicester City 1 10
## 13 Bournemouth 3 8
## 14 Burnley 3 6
## 15 Hull City 8 6
## 16 Middlesbrough 5 5
## 17 Swansea City 9 3
## 18 West Ham Utd 8 9
## 19 Stoke City 9 7
## 20 Sunderland 9 4
## pct_against_home
## 1 29
## 2 33
## 3 71
## 4 20
## 5 60
## 6 50
## 7 33
## 8 38
## 9 57
## 10 33
## 11 62
## 12 9
## 13 27
## 14 33
## 15 57
## 16 50
## 17 75
## 18 47
## 19 56
## 20 69
summary(epl_pct_home_against)
## team total_against_home total_against_away pct_against_home
## Length:20 Min. :1.00 Min. : 2.00 Min. : 9.00
## Class :character 1st Qu.:2.75 1st Qu.: 3.75 1st Qu.:33.00
## Mode :character Median :3.50 Median : 5.00 Median :48.50
## Mean :4.60 Mean : 5.20 Mean :45.45
## 3rd Qu.:8.00 3rd Qu.: 6.25 3rd Qu.:57.75
## Max. :9.00 Max. :10.00 Max. :75.00
nrow(filter(epl_pct_home_against, pct_against_home < 50))
## [1] 10
##10 out of 20 or 50% of the teams conceded less than 50% of the goals at home
ggplot(data = epl_pct_home_against, aes(x = team, y = pct_against_home, fill = pct_against_home))+ geom_bar(stat="identity", position="dodge") + ggtitle("For Home Goal Percentage") + ylab("Percent")+ coord_flip()
epl_total_pct_home_against <- epl1 %>%
summarise(total_against_home = sum(goal_against_home), total_against_away = sum(goal_against_away)) %>%
mutate(pct_against_home = round(( total_against_home/ (total_against_home + total_against_away)) * 100))
epl_total_pct_home_against
## total_against_home total_against_away pct_against_home
## 1 92 104 47
##47% of the against goals were conceded at home
##.csv was created and uploaded to Github
citizenship <- read.csv("https://raw.githubusercontent.com/choudhury1023/Data-607/gh-pages/monthly_citizenship.csv", header = TRUE, stringsAsFactors = FALSE)
citizenship
## Month REGION.1 REGION.2 REGION.3 REGION.4 REGION.5 TOTAL
## 1 April 13 33 76 2 47 171
## 2 May 17 55 209 1 143 425
## 3 June 8 63 221 1 127 420
## 4 July 13 104 240 6 123 486
## 5 August 18 121 274 9 111 533
## 6 September 25 160 239 2 88 514
## 7 October 9 88 295 2 127 521
## 8 November 2 86 292 2 120 502
## 9 December 1 128 232 6 155 522
## 10 TOTAL 106 838 2078 31 1041 4094
tidy_citizenship <- citizenship %>%
gather("region","month_total",2:6) %>%
select(Month, region, month_total,TOTAL)
tidy_citizenship
## Month region month_total TOTAL
## 1 April REGION.1 13 171
## 2 May REGION.1 17 425
## 3 June REGION.1 8 420
## 4 July REGION.1 13 486
## 5 August REGION.1 18 533
## 6 September REGION.1 25 514
## 7 October REGION.1 9 521
## 8 November REGION.1 2 502
## 9 December REGION.1 1 522
## 10 TOTAL REGION.1 106 4094
## 11 April REGION.2 33 171
## 12 May REGION.2 55 425
## 13 June REGION.2 63 420
## 14 July REGION.2 104 486
## 15 August REGION.2 121 533
## 16 September REGION.2 160 514
## 17 October REGION.2 88 521
## 18 November REGION.2 86 502
## 19 December REGION.2 128 522
## 20 TOTAL REGION.2 838 4094
## 21 April REGION.3 76 171
## 22 May REGION.3 209 425
## 23 June REGION.3 221 420
## 24 July REGION.3 240 486
## 25 August REGION.3 274 533
## 26 September REGION.3 239 514
## 27 October REGION.3 295 521
## 28 November REGION.3 292 502
## 29 December REGION.3 232 522
## 30 TOTAL REGION.3 2078 4094
## 31 April REGION.4 2 171
## 32 May REGION.4 1 425
## 33 June REGION.4 1 420
## 34 July REGION.4 6 486
## 35 August REGION.4 9 533
## 36 September REGION.4 2 514
## 37 October REGION.4 2 521
## 38 November REGION.4 2 502
## 39 December REGION.4 6 522
## 40 TOTAL REGION.4 31 4094
## 41 April REGION.5 47 171
## 42 May REGION.5 143 425
## 43 June REGION.5 127 420
## 44 July REGION.5 123 486
## 45 August REGION.5 111 533
## 46 September REGION.5 88 514
## 47 October REGION.5 127 521
## 48 November REGION.5 120 502
## 49 December REGION.5 155 522
## 50 TOTAL REGION.5 1041 4094
tidy_citizenship$Month <- factor(tidy_citizenship$Month, levels = tidy_citizenship$Month)
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
ggplot(data = tidy_citizenship, aes(x = region, y = month_total, fill = Month))+ geom_bar(stat="identity", position="dodge") + ggtitle("Citizenship by Month") + ylab("Citizenship")
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
ggplot(data = tidy_citizenship, aes(x = Month, y = TOTAL, fill = month_total)) + geom_bar(stat="identity", position="dodge") + ggtitle("Citizenship by Month") + ylab("Citizenship")
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
##.csv was created and uploaded to Github
income <- read.csv("https://raw.githubusercontent.com/choudhury1023/Data-607/gh-pages/Income_distribution_by_religious_group.csv", header = TRUE, stringsAsFactors = FALSE)
income
## Religious.tradition Less.than..30.000 X.30.000..49.999
## 1 Buddhist 36% 18%
## 2 Catholic 36% 19%
## 3 Evangelical Protestant 35% 22%
## 4 Hindu 17% 13%
## 5 Historically Black Protestant 53% 22%
## 6 Jehovah's Witness 48% 25%
## 7 Jewish 16% 15%
## 8 Mainline Protestant 29% 20%
## 9 Mormon 27% 20%
## 10 Muslim 34% 17%
## 11 Orthodox Christian 18% 17%
## 12 Unaffiliated (religious "nones") 33% 20%
## X.50.000..99.999 X.100.000.or.more Sample.Size
## 1 32% 13% 233
## 2 26% 19% 6,137
## 3 28% 14% 7,462
## 4 34% 36% 172
## 5 17% 8% 1,704
## 6 22% 4% 208
## 7 24% 44% 708
## 8 28% 23% 5,208
## 9 33% 20% 594
## 10 29% 20% 205
## 11 36% 29% 155
## 12 26% 21% 6,790
names(income)
## [1] "Religious.tradition" "Less.than..30.000" "X.30.000..49.999"
## [4] "X.50.000..99.999" "X.100.000.or.more" "Sample.Size"
income1 <-rename(income, religion = Religious.tradition,smple_size = Sample.Size)
income1
## religion Less.than..30.000 X.30.000..49.999
## 1 Buddhist 36% 18%
## 2 Catholic 36% 19%
## 3 Evangelical Protestant 35% 22%
## 4 Hindu 17% 13%
## 5 Historically Black Protestant 53% 22%
## 6 Jehovah's Witness 48% 25%
## 7 Jewish 16% 15%
## 8 Mainline Protestant 29% 20%
## 9 Mormon 27% 20%
## 10 Muslim 34% 17%
## 11 Orthodox Christian 18% 17%
## 12 Unaffiliated (religious "nones") 33% 20%
## X.50.000..99.999 X.100.000.or.more smple_size
## 1 32% 13% 233
## 2 26% 19% 6,137
## 3 28% 14% 7,462
## 4 34% 36% 172
## 5 17% 8% 1,704
## 6 22% 4% 208
## 7 24% 44% 708
## 8 28% 23% 5,208
## 9 33% 20% 594
## 10 29% 20% 205
## 11 36% 29% 155
## 12 26% 21% 6,790
names(income1)[2] <- "<30k"
names(income1)[3] <- "30k-49,999"
names(income1)[4] <- "50k-99.999"
names(income1)[5] <- "100k+"
income1
## religion <30k 30k-49,999 50k-99.999 100k+
## 1 Buddhist 36% 18% 32% 13%
## 2 Catholic 36% 19% 26% 19%
## 3 Evangelical Protestant 35% 22% 28% 14%
## 4 Hindu 17% 13% 34% 36%
## 5 Historically Black Protestant 53% 22% 17% 8%
## 6 Jehovah's Witness 48% 25% 22% 4%
## 7 Jewish 16% 15% 24% 44%
## 8 Mainline Protestant 29% 20% 28% 23%
## 9 Mormon 27% 20% 33% 20%
## 10 Muslim 34% 17% 29% 20%
## 11 Orthodox Christian 18% 17% 36% 29%
## 12 Unaffiliated (religious "nones") 33% 20% 26% 21%
## smple_size
## 1 233
## 2 6,137
## 3 7,462
## 4 172
## 5 1,704
## 6 208
## 7 708
## 8 5,208
## 9 594
## 10 205
## 11 155
## 12 6,790
##I was having problem renaming the column using dplyr, so had use basic r function for part of the renaming
tidy_income <- income1 %>%
gather("income_bracket", "percentage_raw", 2:5 )%>%
mutate(percentage = as.numeric(gsub("%", "", percentage_raw)))%>%
select(religion, income_bracket, percentage)
tidy_income
## religion income_bracket percentage
## 1 Buddhist <30k 36
## 2 Catholic <30k 36
## 3 Evangelical Protestant <30k 35
## 4 Hindu <30k 17
## 5 Historically Black Protestant <30k 53
## 6 Jehovah's Witness <30k 48
## 7 Jewish <30k 16
## 8 Mainline Protestant <30k 29
## 9 Mormon <30k 27
## 10 Muslim <30k 34
## 11 Orthodox Christian <30k 18
## 12 Unaffiliated (religious "nones") <30k 33
## 13 Buddhist 30k-49,999 18
## 14 Catholic 30k-49,999 19
## 15 Evangelical Protestant 30k-49,999 22
## 16 Hindu 30k-49,999 13
## 17 Historically Black Protestant 30k-49,999 22
## 18 Jehovah's Witness 30k-49,999 25
## 19 Jewish 30k-49,999 15
## 20 Mainline Protestant 30k-49,999 20
## 21 Mormon 30k-49,999 20
## 22 Muslim 30k-49,999 17
## 23 Orthodox Christian 30k-49,999 17
## 24 Unaffiliated (religious "nones") 30k-49,999 20
## 25 Buddhist 50k-99.999 32
## 26 Catholic 50k-99.999 26
## 27 Evangelical Protestant 50k-99.999 28
## 28 Hindu 50k-99.999 34
## 29 Historically Black Protestant 50k-99.999 17
## 30 Jehovah's Witness 50k-99.999 22
## 31 Jewish 50k-99.999 24
## 32 Mainline Protestant 50k-99.999 28
## 33 Mormon 50k-99.999 33
## 34 Muslim 50k-99.999 29
## 35 Orthodox Christian 50k-99.999 36
## 36 Unaffiliated (religious "nones") 50k-99.999 26
## 37 Buddhist 100k+ 13
## 38 Catholic 100k+ 19
## 39 Evangelical Protestant 100k+ 14
## 40 Hindu 100k+ 36
## 41 Historically Black Protestant 100k+ 8
## 42 Jehovah's Witness 100k+ 4
## 43 Jewish 100k+ 44
## 44 Mainline Protestant 100k+ 23
## 45 Mormon 100k+ 20
## 46 Muslim 100k+ 20
## 47 Orthodox Christian 100k+ 29
## 48 Unaffiliated (religious "nones") 100k+ 21
tidy_income$income_bracket <- factor(tidy_income$income_bracket, levels = tidy_income$income_bracket)
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
ggplot(data = tidy_income, aes(x = income_bracket, y = percentage, fill = religion))+ geom_bar(stat="identity", position="dodge") + ggtitle("Income by religion") + ylab("percentage")
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
ggplot(data = filter(tidy_income, income_bracket %in% c("<30k")), aes(x = income_bracket, y = percentage, fill = religion))+ geom_bar(stat="identity", position="dodge") + ggtitle("Income by religion") + ylab("percentage")
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
ggplot(data = filter(tidy_income, income_bracket %in% c("30k-49,999")), aes(x = income_bracket, y = percentage, fill = religion))+ geom_bar(stat="identity", position="dodge") + ggtitle("Income by religion") + ylab("percentage")
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
ggplot(data = filter(tidy_income, income_bracket %in% c("50k-99.999")), aes(x = income_bracket, y = percentage, fill = religion))+ geom_bar(stat="identity", position="dodge") + ggtitle("Income by religion") + ylab("percentage")
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
ggplot(data = filter(tidy_income, income_bracket %in% c("100k+")), aes(x = income_bracket, y = percentage, fill = religion))+ geom_bar(stat="identity", position="dodge") + ggtitle("Income by religion") + ylab("percentage")
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated