nate — Jul 2, 2014, 11:29 AM
binomialCost <- function(S, K, sigma, r, delta, h, T=1) {
if(T!=1) { r = r*T; h = h*T; delta = delta*T; sigma = sigma*sqrt(T) }
u = exp((r-delta)/h + sigma*sqrt(1/h)); d = exp((r-delta)/h - sigma*sqrt(1/h))
p = (exp((r-delta)/h) - d)/(u-d)
cost <- function(node) {
if(length(node)==h) return(max(0,Sundn(node) - K))
else return(max(exp(-(r-delta)/h)*(p*cost(c(node,1)) + (1-p)*cost(c(node,0))),0))
}
Sundn <- function(node) {
un = sum(node); dn = length(node) - un
S*u^un*d^dn
}
cost(numeric(0))
}
costs <- numeric(0)
for(i in 1:18) { costs = c(costs,binomialCost(S=41,K=40,sigma=0.3,r=0.08,delta=0,h=i,T=1)) }
plot(costs,col="blue", type='l')