logTrails A Regression Model 2 IPV*Depression*Sex (w/depression as dichotomous and continuous)

## Loading required package: Matrix
## Loading required package: mvtnorm
## Loading required package: TH.data

IPV/Sex/CES1 ##Depression as a dichotomous variable


mm2 = lmer(log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + Sex + CES1 + (Age | 
    HNDid) + (1 | subclass) + Age:IPVstatus + Age:PovStat + Age:Sex + Age:CES1 + 
    IPVstatus:PovStat + IPVstatus:Sex + IPVstatus:CES1 + PovStat:Sex + PovStat:CES1 + 
    Sex:CES1 + Age:IPVstatus:PovStat + Age:IPVstatus:Sex + Age:IPVstatus:CES1 + 
    Age:PovStat:Sex + Age:Sex:CES1 + IPVstatus:PovStat:Sex + IPVstatus:Sex:CES1 + 
    PovStat:Sex:CES1 + Age:IPVstatus:PovStat:Sex + Age:IPVstatus:Sex:CES1, data = IPVandCognitionDataSet2, 
    na.action = na.omit)
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
cftest(mm2)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + 
##     Sex + CES1 + (Age | HNDid) + (1 | subclass) + Age:IPVstatus + 
##     Age:PovStat + Age:Sex + Age:CES1 + IPVstatus:PovStat + IPVstatus:Sex + 
##     IPVstatus:CES1 + PovStat:Sex + PovStat:CES1 + Sex:CES1 + 
##     Age:IPVstatus:PovStat + Age:IPVstatus:Sex + Age:IPVstatus:CES1 + 
##     Age:PovStat:Sex + Age:Sex:CES1 + IPVstatus:PovStat:Sex + 
##     IPVstatus:Sex:CES1 + PovStat:Sex:CES1 + Age:IPVstatus:PovStat:Sex + 
##     Age:IPVstatus:Sex:CES1, data = IPVandCognitionDataSet2, na.action = na.omit)
## 
## Linear Hypotheses:
##                                         Estimate Std. Error z value
## (Intercept) == 0                         3.33888    0.15151   22.04
## Age == 0                                 0.01541    0.01058    1.46
## IPVstatus1 == 0                          0.52046    0.27764    1.87
## PovStatBelow == 0                        0.06531    0.22812    0.29
## SexMen == 0                              0.04786    0.20260    0.24
## CES11 == 0                               0.56162    0.21589    2.60
## Age:IPVstatus1 == 0                      0.04911    0.02308    2.13
## Age:PovStatBelow == 0                   -0.02151    0.01582   -1.36
## Age:SexMen == 0                         -0.00831    0.01538   -0.54
## Age:CES11 == 0                           0.02193    0.01553    1.41
## IPVstatus1:PovStatBelow == 0             1.11844    0.43889    2.55
## IPVstatus1:SexMen == 0                  -0.50893    0.59436   -0.86
## IPVstatus1:CES11 == 0                   -1.12804    0.36396   -3.10
## PovStatBelow:SexMen == 0                 0.31044    0.33102    0.94
## PovStatBelow:CES11 == 0                 -0.43739    0.16015   -2.73
## SexMen:CES11 == 0                       -0.86284    0.36807   -2.34
## Age:IPVstatus1:PovStatBelow == 0         0.11210    0.03810    2.94
## Age:IPVstatus1:SexMen == 0              -0.06167    0.04061   -1.52
## Age:IPVstatus1:CES11 == 0               -0.10191    0.02999   -3.40
## Age:PovStatBelow:SexMen == 0             0.02842    0.02713    1.05
## Age:SexMen:CES11 == 0                   -0.03213    0.03002   -1.07
## IPVstatus1:PovStatBelow:SexMen == 0     -1.02604    0.63179   -1.62
## IPVstatus1:SexMen:CES11 == 0             1.50363    0.58314    2.58
## PovStatBelow:SexMen:CES11 == 0           0.59532    0.36539    1.63
## Age:IPVstatus1:PovStatBelow:SexMen == 0 -0.08707    0.05190   -1.68
## Age:IPVstatus1:SexMen:CES11 == 0         0.15271    0.04701    3.25
##                                         Pr(>|z|)
## (Intercept) == 0                         < 2e-16
## Age == 0                                 0.14498
## IPVstatus1 == 0                          0.06085
## PovStatBelow == 0                        0.77464
## SexMen == 0                              0.81324
## CES11 == 0                               0.00928
## Age:IPVstatus1 == 0                      0.03337
## Age:PovStatBelow == 0                    0.17382
## Age:SexMen == 0                          0.58884
## Age:CES11 == 0                           0.15774
## IPVstatus1:PovStatBelow == 0             0.01082
## IPVstatus1:SexMen == 0                   0.39185
## IPVstatus1:CES11 == 0                    0.00194
## PovStatBelow:SexMen == 0                 0.34833
## PovStatBelow:CES11 == 0                  0.00631
## SexMen:CES11 == 0                        0.01907
## Age:IPVstatus1:PovStatBelow == 0         0.00326
## Age:IPVstatus1:SexMen == 0               0.12883
## Age:IPVstatus1:CES11 == 0                0.00068
## Age:PovStatBelow:SexMen == 0             0.29474
## Age:SexMen:CES11 == 0                    0.28449
## IPVstatus1:PovStatBelow:SexMen == 0      0.10437
## IPVstatus1:SexMen:CES11 == 0             0.00992
## PovStatBelow:SexMen:CES11 == 0           0.10325
## Age:IPVstatus1:PovStatBelow:SexMen == 0  0.09343
## Age:IPVstatus1:SexMen:CES11 == 0         0.00116
## (Univariate p values reported)

pCES1 = (c(0, 1))

hatIPVcog1 = zMixHat(IPVandCognitionDataSet2, mm2, vary = "CES1=pCES1,IPVstatus=zQ(0,1),Sex=zQ(Women,Men)", 
    fixedCov = c("PovStat", "Age"))

head(hatIPVcog1)
##   CES1 IPVstatus   Sex log TrailsAtestSec PovStat    Age   hat
## 1    0         0 Women   0              0  0.3333 -7.111 3.302
## 2    1         0 Women   0              0  0.3333 -7.111 3.562
## 3    0         1 Women   0              0  0.3333 -7.111 3.580
## 4    1         1 Women   0              0  0.3333 -7.111 3.437
## 5    0         0   Men   0              0  0.3333 -7.111 3.445
## 6    1         0   Men   0              0  0.3333 -7.111 3.269

par(mar = c(4, 4, 0.5, 2), las = 1, lwd = 2)

HNDcolors = HNDpltColors()

with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$IPVstatus == "0", ], 
    plot(CES1, hat, lty = 1, col = "red", type = "l", ylim = c(3, 4), ylab = "log(Trails A)", 
        xlab = "Depression"))
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$IPVstatus == "1", ], 
    lines(CES1, hat, lty = 2, col = "red"))

with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$IPVstatus == "0", ], lines(CES1, 
    hat, lty = 1, col = "blue", typ = "l", ylim = c(3, 4), ylab = "Trails A", 
    xlab = "Depression"))
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$IPVstatus == "1", ], lines(CES1, 
    hat, lty = 2, col = "blue"))


legend(0, 4, zQ(NoIPV, IPV), lty = 1:2, col = "black", cex = 0.9, bty = "n")
text(0, 3, "Women in red", adj = c(0, 0), col = "red", cex = 0.95)
text(0, 3.1, "Men in blue", adj = c(0, 0), col = "blue", cex = 0.95)

plot of chunk unnamed-chunk-1

IPV/Sex/w1CES ##Depression as a continous variable


(mm2 = lmer(log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + Sex + w1CES + 
    (Age | HNDid) + (1 | subclass) + Age:IPVstatus + Age:PovStat + Age:Sex + 
    Age:w1CES + IPVstatus:PovStat + IPVstatus:Sex + IPVstatus:w1CES + Sex:w1CES + 
    Age:IPVstatus:PovStat + Age:IPVstatus:Sex + Age:IPVstatus:w1CES + Age:Sex:w1CES + 
    IPVstatus:Sex:w1CES + Age:IPVstatus:Sex:w1CES, data = IPVandCognitionDataSet2, 
    na.action = na.omit))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['lmerMod']
## Formula: log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + Sex + w1CES +      (Age | HNDid) + (1 | subclass) + Age:IPVstatus + Age:PovStat +      Age:Sex + Age:w1CES + IPVstatus:PovStat + IPVstatus:Sex +      IPVstatus:w1CES + Sex:w1CES + Age:IPVstatus:PovStat + Age:IPVstatus:Sex +      Age:IPVstatus:w1CES + Age:Sex:w1CES + IPVstatus:Sex:w1CES +      Age:IPVstatus:Sex:w1CES 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 159 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.3410       
##           Age         0.0115   1.00
##  subclass (Intercept) 0.1467       
##  Residual             0.1837       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                 (Intercept)                          Age  
##                     3.23474                     -0.00926  
##                  IPVstatus1                 PovStatBelow  
##                     0.59224                      0.12779  
##                      SexMen                        w1CES  
##                     0.24496                      0.01678  
##              Age:IPVstatus1             Age:PovStatBelow  
##                     0.07240                     -0.00362  
##                  Age:SexMen                    Age:w1CES  
##                     0.02460                      0.00188  
##     IPVstatus1:PovStatBelow            IPVstatus1:SexMen  
##                     0.51803                     -1.22585  
##            IPVstatus1:w1CES                 SexMen:w1CES  
##                    -0.02898                     -0.01930  
## Age:IPVstatus1:PovStatBelow        Age:IPVstatus1:SexMen  
##                     0.06480                     -0.18358  
##        Age:IPVstatus1:w1CES             Age:SexMen:w1CES  
##                    -0.00377                     -0.00202  
##     IPVstatus1:SexMen:w1CES  Age:IPVstatus1:SexMen:w1CES  
##                     0.05989                      0.00934

cftest(mm2)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + 
##     Sex + w1CES + (Age | HNDid) + (1 | subclass) + Age:IPVstatus + 
##     Age:PovStat + Age:Sex + Age:w1CES + IPVstatus:PovStat + IPVstatus:Sex + 
##     IPVstatus:w1CES + Sex:w1CES + Age:IPVstatus:PovStat + Age:IPVstatus:Sex + 
##     Age:IPVstatus:w1CES + Age:Sex:w1CES + IPVstatus:Sex:w1CES + 
##     Age:IPVstatus:Sex:w1CES, data = IPVandCognitionDataSet2, 
##     na.action = na.omit)
## 
## Linear Hypotheses:
##                                   Estimate Std. Error z value Pr(>|z|)
## (Intercept) == 0                  3.234740   0.207111   15.62   <2e-16
## Age == 0                         -0.009256   0.015190   -0.61   0.5423
## IPVstatus1 == 0                   0.592244   0.342083    1.73   0.0834
## PovStatBelow == 0                 0.127786   0.165636    0.77   0.4404
## SexMen == 0                       0.244959   0.264289    0.93   0.3540
## w1CES == 0                        0.016780   0.012633    1.33   0.1841
## Age:IPVstatus1 == 0               0.072400   0.026810    2.70   0.0069
## Age:PovStatBelow == 0            -0.003617   0.012381   -0.29   0.7702
## Age:SexMen == 0                   0.024600   0.021262    1.16   0.2473
## Age:w1CES == 0                    0.001883   0.000927    2.03   0.0421
## IPVstatus1:PovStatBelow == 0      0.518027   0.310930    1.67   0.0957
## IPVstatus1:SexMen == 0           -1.225849   0.772723   -1.59   0.1126
## IPVstatus1:w1CES == 0            -0.028981   0.016014   -1.81   0.0703
## SexMen:w1CES == 0                -0.019301   0.016452   -1.17   0.2407
## Age:IPVstatus1:PovStatBelow == 0  0.064801   0.025357    2.56   0.0106
## Age:IPVstatus1:SexMen == 0       -0.183584   0.061337   -2.99   0.0028
## Age:IPVstatus1:w1CES == 0        -0.003772   0.001248   -3.02   0.0025
## Age:SexMen:w1CES == 0            -0.002018   0.001394   -1.45   0.1477
## IPVstatus1:SexMen:w1CES == 0      0.059888   0.039541    1.51   0.1299
## Age:IPVstatus1:SexMen:w1CES == 0  0.009339   0.003412    2.74   0.0062
## (Univariate p values reported)

# pw1CES=seq(0,46)

hatIPVcog1 = zMixHat(IPVandCognitionDataSet2, mm2, vary = "w1CES=seq(0,46),IPVstatus=zQ(0,1),Sex=zQ(Women,Men)", 
    fixedCov = c("PovStat", "Age"))

head(hatIPVcog1)
##   w1CES IPVstatus   Sex log TrailsAtestSec PovStat    Age   hat
## 1     0         0 Women   0              0  0.3333 -7.111 3.352
## 2     1         0 Women   0              0  0.3333 -7.111 3.355
## 3     2         0 Women   0              0  0.3333 -7.111 3.359
## 4     3         0 Women   0              0  0.3333 -7.111 3.362
## 5     4         0 Women   0              0  0.3333 -7.111 3.365
## 6     5         0 Women   0              0  0.3333 -7.111 3.369

par(mar = c(4, 4, 0.5, 2), las = 1, lwd = 2)

HNDcolors = HNDpltColors()

with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$IPVstatus == "0", ], 
    plot(w1CES, hat, lty = 1, col = "red", type = "l", ylim = c(3, 4), ylab = "log(Trails A)", 
        xlab = "CES-D Score"))
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$IPVstatus == "1", ], 
    lines(w1CES, hat, lty = 2, col = "red"))

with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$IPVstatus == "0", ], lines(w1CES, 
    hat, lty = 1, col = "blue", typ = "l", ylim = c(3, 4), ylab = "Trails A", 
    xlab = "CES-D Score"))
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$IPVstatus == "1", ], lines(w1CES, 
    hat, lty = 2, col = "blue"))


legend(0, 4, zQ(NoIPV, IPV), lty = 1:2, col = "black", cex = 0.9, bty = "n")
text(0, 3, "Women in red", adj = c(0, 0), col = "red", cex = 0.95)
text(0, 3.1, "Men in blue", adj = c(0, 0), col = "blue", cex = 0.95)

plot of chunk unnamed-chunk-2