rm(list=ls(all=TRUE))
#Data prep
setwd("D:/emre/SkyDrive/makale/FactCheck")
library(lessR)
##
## lessR 3.5.0 feedback: gerbing@pdx.edu web: lessRstats.com
## -------------------------------------------------------------------
## 1. Read a text, Excel, SPSS, SAS or R data file from your computer
## into the mydata data table, enter: mydata <- Read()
## 2. For a list of help topics and functions, enter: Help()
## 3. Use theme function for global settings, Ex: theme(colors="gray")
library(foreign)
library(nnet)
library(effects)
library(car)
##
## Attaching package: 'car'
## The following object is masked from 'package:effects':
##
## Prestige
## The following objects are masked from 'package:lessR':
##
## bc, Recode, sp
library(reshape)
library(sjPlot)
library(pander)
mydata <- read.csv("combinedR.csv")
mydata$Tone <- NULL
#Sorting the variables
mydata$Party[mydata$Party == 1] <- "AKP"
mydata$Party[mydata$Party == 2] <- "CHP"
mydata$Party[mydata$Party == 3] <- "MHP"
mydata$Party[mydata$Party == 4] <- "HDP"
mydata$Party[mydata$Party == 5] <- "Others"
mydata$f.party <- as.factor(mydata$Party)
mydata$Scale3[mydata$Scale3==1] <- "True"
mydata$Scale3[mydata$Scale3==2] <- "Partially True"
mydata$Scale3[mydata$Scale3==3] <- "False"
mydata$fact.level <- as.factor(mydata$Scale3)
mydata$MessageMedium[mydata$MessageMedium==1] <- "Twitter"
mydata$MessageMedium[mydata$MessageMedium == 2] <- 0
mydata$MessageMedium[mydata$MessageMedium==0] <- "News"
mydata$MessageMedium<-recode(mydata$MessageMedium,"3=NA")
mydata$medium <- as.factor(mydata$MessageMedium)
mydata$Topic.f<- NA
mydata$Topic.f[mydata$Topic=="Ekonomi"] <- 1
mydata$Topic.f[mydata$Topic=="Mali Politikalar"] <- 1
mydata$Topic.f[mydata$Topic=="Sanayi, Ticaret ve Finans"] <- 1
mydata$Topic.f<-recode(mydata$Topic.f,"NA=0")
mydata$Topic.f[mydata$Topic.f==1] <- "Economy"
mydata$Topic.f[mydata$Topic.f==0] <- "Other Issues"
mydata$Topic.f <- as.factor(mydata$Topic.f)
sjp.xtab(mydata$f.party, mydata$fact.level, margin = "row", bar.pos = "stack", coord.flip = TRUE,
show.n = FALSE, show.prc = TRUE, axis.titles = "Message Sender", geom.colors = c("red", "green", "lightblue"))

sjp.xtab(mydata$f.party, mydata$medium, margin = "row", bar.pos = "stack", coord.flip = TRUE,
show.n = FALSE, show.prc = TRUE, axis.titles = "Message Medium", geom.colors = c("red", "green"))

sjp.xtab(mydata$f.party, mydata$Topic.f, margin = "row", bar.pos = "stack", coord.flip = TRUE,
show.n = FALSE, show.prc = TRUE, axis.titles = "Message Medium", geom.colors = c("red", "green"))

mydata$fact.level <- relevel(mydata$fact.level, ref = "Partially True")
mydata$f.party <- relevel(mydata$f.party, ref = "AKP")
ct1 <- sjt.frq(mydata$fact.level)
pander(ct1)
## Warning in pander.default(ct1): No pander.method for "sjTable", reverting
## to default.No pander.method for "sjtfrq", reverting to default.
- page.style:
page.content.list:
<table>
mydata$fact.level
<th class="thead firsttablerow firsttablecol">value</th>
<th class="thead firsttablerow">N</th>
<th class="thead firsttablerow">raw %</th>
<th class="thead firsttablerow">valid %</th>
<th class="thead firsttablerow">cumulative %</th>
<td class="tdata leftalign firsttablecol">Partially True</td>
<td class="tdata centeralign">199</td>
<td class="tdata centeralign">22.98</td>
<td class="tdata centeralign">22.98</td>
<td class="tdata centeralign">22.98</td>
<td class="tdata leftalign firsttablecol">False</td>
<td class="tdata centeralign">176</td>
<td class="tdata centeralign">20.32</td>
<td class="tdata centeralign">20.32</td>
<td class="tdata centeralign">43.30</td>
<td class="tdata leftalign firsttablecol">True</td>
<td class="tdata centeralign">491</td>
<td class="tdata centeralign">56.70</td>
<td class="tdata centeralign">56.70</td>
<td class="tdata centeralign">100.00</td>
<td class="tdata leftalign lasttablerow firsttablecol">missings</td>
<td class="tdata centeralign lasttablerow">0</td>
<td class="tdata centeralign lasttablerow">0.00</td>
<td class="tdata lasttablerow"></td>
<td class="tdata lasttablerow"></td>
<td class="tdata summary" colspan="5">total N=866 · valid N=866 · x̄=2.34 · σ=0.83</td>
- output.complete:
mydata$fact.level
|
value
|
N
|
raw %
|
valid %
|
cumulative %
|
|
Partially True
|
199
|
22.98
|
22.98
|
22.98
|
|
False
|
176
|
20.32
|
20.32
|
43.30
|
|
True
|
491
|
56.70
|
56.70
|
100.00
|
|
missings
|
0
|
0.00
|
|
|
|
total N=866 · valid N=866 · x̄=2.34 · σ=0.83
|
- knitr:
mydata$fact.level
|
value
|
N
|
raw %
|
valid %
|
cumulative %
|
|
Partially True
|
199
|
22.98
|
22.98
|
22.98
|
|
False
|
176
|
20.32
|
20.32
|
43.30
|
|
True
|
491
|
56.70
|
56.70
|
100.00
|
|
missings
|
0
|
0.00
|
|
|
|
total N=866 · valid N=866 · x̄=2.34 · σ=0.83
|
ct2 <- sjt.xtab(mydata$fact.level, mydata$medium)
pander(ct2)
## Warning in pander.default(ct2): No pander.method for "sjTable", reverting
## to default.No pander.method for "sjtxtab", reverting to default.
- page.style:
- page.content:
|
fact.level
|
medium
|
Total
|
|
News
|
Twitter
|
|
Partially True
|
50
|
30
|
80
|
|
False
|
41
|
28
|
69
|
|
True
|
212
|
78
|
290
|
|
Total
|
303
|
136
|
439
|
|
Χ2=6.826 · df=2 · Φc=.125 · p=.033
|
- output.complete:
|
fact.level
|
medium
|
Total
|
|
News
|
Twitter
|
|
Partially True
|
50
|
30
|
80
|
|
False
|
41
|
28
|
69
|
|
True
|
212
|
78
|
290
|
|
Total
|
303
|
136
|
439
|
|
Χ2=6.826 · df=2 · Φc=.125 · p=.033
|
- knitr:
|
fact.level
|
medium
|
Total
|
|
News
|
Twitter
|
|
Partially True
|
50
|
30
|
80
|
|
False
|
41
|
28
|
69
|
|
True
|
212
|
78
|
290
|
|
Total
|
303
|
136
|
439
|
|
Χ2=6.826 · df=2 · Φc=.125 · p=.033
|
ct3 <- sjt.xtab(mydata$fact.level, mydata$f.party)
pander(ct3)
## Warning in pander.default(ct3): No pander.method for "sjTable", reverting
## to default.No pander.method for "sjtxtab", reverting to default.
- page.style:
- page.content:
|
fact.level
|
f.party
|
Total
|
|
AKP
|
CHP
|
HDP
|
MHP
|
Others
|
|
Partially True
|
108
|
43
|
15
|
20
|
13
|
199
|
|
False
|
90
|
41
|
4
|
20
|
21
|
176
|
|
True
|
196
|
145
|
30
|
84
|
36
|
491
|
|
Total
|
394
|
229
|
49
|
124
|
70
|
866
|
|
Χ2=27.564 · df=8 · Φc=.126 · p<.001
|
- output.complete:
|
fact.level
|
f.party
|
Total
|
|
AKP
|
CHP
|
HDP
|
MHP
|
Others
|
|
Partially True
|
108
|
43
|
15
|
20
|
13
|
199
|
|
False
|
90
|
41
|
4
|
20
|
21
|
176
|
|
True
|
196
|
145
|
30
|
84
|
36
|
491
|
|
Total
|
394
|
229
|
49
|
124
|
70
|
866
|
|
Χ2=27.564 · df=8 · Φc=.126 · p<.001
|
- knitr:
|
fact.level
|
f.party
|
Total
|
|
AKP
|
CHP
|
HDP
|
MHP
|
Others
|
|
Partially True
|
108
|
43
|
15
|
20
|
13
|
199
|
|
False
|
90
|
41
|
4
|
20
|
21
|
176
|
|
True
|
196
|
145
|
30
|
84
|
36
|
491
|
|
Total
|
394
|
229
|
49
|
124
|
70
|
866
|
|
Χ2=27.564 · df=8 · Φc=.126 · p<.001
|
ct4 <- sjt.xtab(mydata$fact.level, mydata$Topic.f)
pander(ct4)
## Warning in pander.default(ct4): No pander.method for "sjTable", reverting
## to default.No pander.method for "sjtxtab", reverting to default.
- page.style:
- page.content:
|
fact.level
|
Topic.f
|
Total
|
|
Economy
|
Other Issues
|
|
Partially True
|
41
|
158
|
199
|
|
False
|
40
|
136
|
176
|
|
True
|
68
|
423
|
491
|
|
Total
|
149
|
717
|
866
|
|
Χ2=9.262 · df=2 · Φc=.103 · p=.010
|
- output.complete:
|
fact.level
|
Topic.f
|
Total
|
|
Economy
|
Other Issues
|
|
Partially True
|
41
|
158
|
199
|
|
False
|
40
|
136
|
176
|
|
True
|
68
|
423
|
491
|
|
Total
|
149
|
717
|
866
|
|
Χ2=9.262 · df=2 · Φc=.103 · p=.010
|
- knitr:
|
fact.level
|
Topic.f
|
Total
|
|
Economy
|
Other Issues
|
|
Partially True
|
41
|
158
|
199
|
|
False
|
40
|
136
|
176
|
|
True
|
68
|
423
|
491
|
|
Total
|
149
|
717
|
866
|
|
Χ2=9.262 · df=2 · Φc=.103 · p=.010
|
#Multinominal Model
model1 <- multinom(fact.level ~ f.party + Topic.f, data=mydata)
## # weights: 21 (12 variable)
## initial value 951.398242
## iter 10 value 833.632163
## final value 832.880993
## converged
summary(model1)
## Call:
## multinom(formula = fact.level ~ f.party + Topic.f, data = mydata)
##
## Coefficients:
## (Intercept) f.partyCHP f.partyHDP f.partyMHP f.partyOthers
## False -0.09136019 0.1323051 -1.13659372 0.1808132 0.6620887
## True 0.18226651 0.6280537 0.08746294 0.8444776 0.4219144
## Topic.fOther Issues
## False -0.1154050
## True 0.4961434
##
## Std. Errors:
## (Intercept) f.partyCHP f.partyHDP f.partyMHP f.partyOthers
## False 0.2448914 0.2608881 0.5806088 0.3470032 0.3807328
## True 0.2185409 0.2116489 0.3392891 0.2769016 0.3458620
## Topic.fOther Issues
## False 0.2526225
## True 0.2208873
##
## Residual Deviance: 1665.762
## AIC: 1689.762
exp(coef(model1)); exp(confint(model1))
## (Intercept) f.partyCHP f.partyHDP f.partyMHP f.partyOthers
## False 0.9126889 1.141457 0.3209103 1.198191 1.938838
## True 1.1999339 1.873960 1.0914018 2.326762 1.524878
## Topic.fOther Issues
## False 0.8910052
## True 1.6423750
## , , False
##
## 2.5 % 97.5 %
## (Intercept) 0.5647690 1.474941
## f.partyCHP 0.6845277 1.903390
## f.partyHDP 0.1028415 1.001380
## f.partyMHP 0.6069551 2.365352
## f.partyOthers 0.9193082 4.089044
## Topic.fOther Issues 0.5430597 1.461884
##
## , , True
##
## 2.5 % 97.5 %
## (Intercept) 0.7818708 1.841534
## f.partyCHP 1.2376687 2.837371
## f.partyHDP 0.5612822 2.122209
## f.partyMHP 1.3522372 4.003603
## f.partyOthers 0.7741708 3.003540
## Topic.fOther Issues 1.0652528 2.532165