The midterm questions are similar to that of past exams. Please make sure you understand all of them. All examples in this page are selected from past exams.

Limits computation.

Direct Substitution.

\[lim_{x \to a} f(x) = f(a)\]

In other words, we do direct substitution if function is continuous at that point.

Example 1:

\[lim_{t \to 2}(6 - t^3)(t - 3) = (6 - 2^3)(2 - 3) = 2\]

Limits of indeterminate form \(\frac{0}{0}\).

Some techniques needed to simplify: taking common denominator, factor out polynomials, expanding out powers, multiplying conjugate forms…

Example 1:

\[\lim_{x \to 0} \frac{x}{\sqrt{x +3} - \sqrt{3}} = \lim_{x\to 0} \frac{x}{\sqrt{x +3} - \sqrt{3}} \cdot \frac{\sqrt{x +3} +\sqrt{3}}{\sqrt{x +3} +\sqrt{3}} = \lim_{x \to 0} \frac{\sqrt{x +3} +\sqrt{3}}{1} = 2 \sqrt{3}\]

Example 2:

\[\lim_{u \to 5} \frac{\sqrt{u+11} -4}{u -5} = \lim_{u\to 5} \frac{\sqrt{u+11} -4}{u -5} \cdot \frac{\sqrt{u+11} + 4}{\sqrt{u+11} + 4} = \lim_{u \to 5} \frac{1}{\sqrt{u+11} + 4} = \frac{1}{8}\]

Example 3:

\[\lim_{x \to -1^{+}}\frac{x^2-x -2}{x+1} = \lim_{x \to -1^{+}}\frac{(x+1)(x -2)}{x+1} = \lim_{x \to -1^{+}} (x -2) = -3\]

Example 4:

\[\lim_{x \to 3}\frac{x^2-2x -3}{x-3} =\lim_{x \to 3}\frac{(x-3)(x+1)}{x-3} = \lim_{x \to 3} (x +1) = 4\]

Infinite limits \(\infty, -\infty\) and vertical asymptotes.

This happens when denominator becomes zero but numerator doesn’t. If one of \(\lim_{x \to a} f(x), \lim_{x \to a^{-}} f(x), \lim_{x \to a^{+}} f(x)\) is either \(\infty\), or \(-\infty\), \(x = a\) is called vertical asymptote.

Example 1:

\[\lim_{x \to 1^{-}}\frac{-2 \pi^x}{(x -1)^5}\]

Left-side limit means \(x < 1\), so \((x-1)\) is negative and so is \((x-1)^5\). The numerator \(-2 \pi^x\) stays negative, so the limit is \(\infty\).

Example 2:

\[f(x) = \frac{2 x^2 -2}{x^2 +x}\]

The domain of \(f(x)\) is when \(x^2 +x \neq 0\), i.e.,\(x \neq 0, -1\).

\[\lim_{x \to 0^{+}}\frac{2 x^2 -2}{x^2 +x} = \lim_{x \to 0^{+}}\frac{2 (x+1)(x-1)}{x(x+1)} = \lim_{x \to 0^{+}}\frac{2(x-1)}{x} = -\infty\]

\[\lim_{x \to 0^{-}}\frac{2 x^2 -2}{x^2 +x} = \lim_{x \to 0^{-}}\frac{2 (x+1)(x-1)}{x(x+1)} = \lim_{x \to 0^{-}}\frac{2(x-1)}{x} = \infty\]

So \(x = 0\) is a vertical asymptote.

\[\lim_{x \to -1}\frac{2 x^2 -2}{x^2 +x} = \lim_{x \to -1}\frac{2 (x+1)(x-1)}{x(x+1)} = \lim_{x \to -1}\frac{2(x-1)}{x} = 4\]

So \(x = -1\) is not a vertical asymptote.

Exmaple 3:

\[f(x) = \frac{x^2 -2x}{x^2 -x-2}\]

The domain is when \(x^2 - x -2 \neq 0\), i.e., \(x \neq 2, -1\).

\[\lim_{x \to -1^{+}} \frac{x^2 -2x}{x^2 -x-2} = \lim_{x \to -1^{+}} \frac{x(x-2)}{(x-2)(x+1)} = \lim_{x \to -1^{+}}\frac{x}{x+1} = -\infty\]

\[\lim_{x \to -1^{-}}\frac{x^2 -2x}{x^2 -x-2} = \lim_{x \to -1^{-}}\frac{x(x-2)}{(x-2)(x+1)} = \lim_{x \to -1^{-}}\frac{x}{x+1} = \infty\]

So \(x = -1\) is a vertical asymptote.

\[\lim_{x \to 2}\frac{x^2 -2x}{x^2 -x-2} = \lim_{x \to 2}\frac{x(x-2)}{(x-2)(x+1)} = \lim_{x \to 2}\frac{x}{x+1} =\frac{2}{3}\]

So \(x = 2\) is not a vertical asymptote.

Limits at infinity and horizontal asymptotes.

If \(\lim_{x \to \infty} f(x) = L\) or \(\lim_{x \to -\infty} f(x) = L\), \(y = L\) is called the horizontal asymptote. A useful technique is dividing both the numerator and denominator the highest power of \(x\) occurs in the denominator.

Example 1:

\[\lim_{x \to \infty}\frac{x^2 -2x}{x^2 -x-2} = \lim_{x \to \infty}\frac{1 -\frac{2x}{x^2}}{1 -\frac{x}{x^2}-\frac{2}{x^2}} = \frac{1}{1} = 1\]

Also \(\lim_{x \to -\infty}\frac{x^2 -2x}{x^2 -x-2} =1\). So \(y = 1\) is the horizontal asymptote.

Example 2:

\[\lim_{x \to \infty}\frac{2 x^2 -2}{x^2 +x} = \lim_{x \to \infty}\frac{2 -\frac{2}{x^2}}{1 +\frac{x}{x^2}} = \frac{2}{1} = 2\]

Also \(\lim_{x \to -\infty}\frac{2 x^2 -2}{x^2 +x} =2\). So \(y = 2\) is the horizontal asymptote.

Squeezing theorem.

This is useful when the question has \(\sin(\dot)\), or \(\cos(\cdot)\) as part of a function.

Example 1:

\[ \lim_{x \to \infty} \frac{1}{x} \sin(x) = 0\].

This is because \(-\frac{1}{x} \leq \frac{1}{x} \sin(x) \leq \frac{1}{x}\) and \(\lim_{x \to \infty} \frac{1}{x} = 0\)

Continuity.

Determine the continuity of a function.

Most functions we’ve seen are continuous in their domains.

Example 1:

\[\frac{x-1}{x+2}\]

The domain is when \(x \neq -2\). So function is continuous when \(x \neq -2\).

Example 2:

\[\log_{10}(x-1)\]

The domain is when \(x > 1\). So function is continuous when \(x > 1\).

Example 3:

\[\sqrt{x+2}\]

The domain is when \(x \geq -2\). So function is continuous when \(x \geq -2\).

Intermediate value theorem.

To prove an equation \(f(x) = L\) has a solution or at least one root in the interval \((a, b)\). Need to show that \(f(x)\) is at least continuous on \([a, b]\), and value \(L\) is between \(f(a)\) and \(f(b)\).

Example 1:

\[f(x) = \sqrt{1+x} - \sqrt{2-x}\]

As function \(f(x)\) has domain as \(-1 \leq x \leq 2\), it is continuous on \([-1, 2]\). To show equation \(f(x) =1\) has a solution in \((-1, 2)\), check that \[f(-1) < 1 < f(2).\]

Continuity of a piecewise function.

If \(a\) if cut-off point of the piecewise function \(f(x)\), it is continuous at \(a\) if \(\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)\).

Example 1:

Let \[f(x) = \begin{cases} kx +2, \ \ x \leq 1 \\ x^2, \ \ x > 1 \end{cases}\]

For \(f(x)\) to be continuous at \(a = 1\), set \[ \lim_{x \to 1^{-}} kx+2 = \lim_{x \to 1^{+}} x^2\] so \(k+2 = 1\), \(k = -1\).

Precise definition of limits.

Know the statement of precise definition: for any positive number \(\epsilon\), there is another positive number \(\delta\), such that if \[0 < |x -a| < \delta,\] \[|f(x) - L| < \epsilon.\]

Find \(\delta\) algebrically.

Example 1:

Prove \[\lim_{x \to 2} 3x-1 = 5\]

Let \(|(3x-1) -5| < \epsilon\), then \(3|x-2| < \epsilon\), \(|x-2| < \epsilon/3\). Therefore, for any \(\epsilon\), we found \(\delta = \epsilon/3\), if \[0 < |x -2| < \delta,\] \[|(3x-1) - 5| < \epsilon.\]

Find \(\delta\) graphically.

Draw two horizontal lines \(L + \epsilon , L - \epsilon\) and find the \(x\)-coordinate of intersection points with the graph of \(f(x)\).

In other words, set \(f(x) = L + \epsilon\) and \(f(x) - \epsilon\) to solve for \(x\), then the two solutions are \(x_1, x_2\). Then Choose \(\delta = \min(|x_1-a|, |x_2-a|)\).

Example 1:

Find a number \(\delta >0\) so that \(|\sqrt{x} -2| < 0.4\) whenever \(|x -4| < \delta\).

Set \(\sqrt{x} = 2+0.4\) and \(\sqrt{x} = 2 - 0.4\), then \(x_1 = 5.76, x_2 = 2.56\). Then choose \(\delta = \min(|5.76-4|, |2.56-4|) = 1.44.\)

Using defition to compute derivative.

Derivative at a number \[f'(a) = \lim_{h \to 0} \frac{f(a +h) - f(a)}{h}\]

Derivative as a function \[f'(x) = \lim_{h \to 0} \frac{f(x +h) - f(x)}{h}\]

The tangent line equation at the point \((a, f(a))\) is \[y - f(a) = f'(a)(x-a)\]

I suggest you compute \(f'(x)\) first, then plug in \(a\).

Example 1:

Derivative of \[f(x) = \frac{1}{x}\]

\[f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{x - (x+h)}{x(x+h) h} = \lim_{h \to 0} \frac{-1}{x(x+h)} = \frac{-1}{x^2}\].

Example 2:

\[f(x) = \frac{3}{x+1}\]

\[f'(x) = \lim_{h \to 0} \frac{\frac{3}{x+h+1} - \frac{3}{x+1}}{h} = \lim_{h \to 0} \frac{3(x+1) - 3(x+h+1)}{(x+1)(x+h+1) h} = \lim_{h \to 0} \frac{-3}{(x+1)(x+h+1)} = \frac{-3}{(x+1)^2}\].

Example 3:

Find the tangent line of \(x^2\) at \((1,1)\).

\[f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2x h + h^2}{h} = \lim_{h \to 0} 2x + h = 2x\].

Plug in \(x = 1\), the slope is \(2\). So \[y -1 = 2(x-1)\] or \(y = 2x -1\) is the tangent line at \((1,1)\).