Rev

0.1 28 Sept 2016 supporess printing of all the code
0.2 30 Sept 2016 use metro area populations from wikipedia
0.5 1 Oct 2016 add ChoroplethRmaps to reduce map clutter and add date span

Set-up

[1] "Using direct authentication"

Get city geo data from maps::cities

Select number of cities

    n.cities <- 40

The top Cities are:

rank population metro metro_match name country.etc pop lat long city_name
1 20182305 New York new york New York NY NY 8124427 40.67 -73.94 New York
2 13340068 Los Angeles los angeles Los Angeles CA CA 3911500 34.11 -118.41 Los Angeles
3 9551031 Chicago chicago Chicago IL IL 2830144 41.84 -87.68 Chicago
4 7102796 Dallas dallas Dallas TX TX 1216543 32.79 -96.77 Dallas
5 6656947 Houston houston Houston TX TX 2043005 29.77 -95.39 Houston
6 6097684 Washington washington WASHINGTON DC DC 548359 38.91 -77.02 WASHINGTON
7 6069875 Philadelphia philadelphia Philadelphia PA PA 1439814 40.01 -75.13 Philadelphia
8 6012331 Miami miami Miami FL FL 386740 25.78 -80.21 Miami
9 5710795 Atlanta atlanta Atlanta GA GA 424096 33.76 -84.42 Atlanta
10 4774321 Boston boston Boston MA MA 567759 42.34 -71.02 Boston

Data collection for the top 40 cities (by population) in the U.S. This includes cities from New York NY to Nashville TN.

Keeping first 40 metro areas comprises a total population of 174.3 million people.

#AI geo-preference.

Use the twitteR::searchTwitter command.

[1] "Rate limited .... blocking for a minute and retrying up to 119 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 118 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 117 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 116 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 115 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 114 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 113 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 112 times ..."
[1] "Rate limited .... blocking for a minute and retrying up to 111 times ..."

Tweet-Map for #AI?

    #map.plot +  ## use this to underlay with google map
    ggplot() +   ## use this to underlay with simple border outlines
    geom_polygon(data = state.map %>% filter(region != "alaska" & region != "hawaii"), aes(x=long, y=lat, group = group), fill = "#DAC143", color = "#36180D") +
    geom_point(aes(x = lon, y = lat, fill = tweet.flux, size = n.tweets), data=analyzed_df, pch=21, color = "#33333399") +
    ggtitle(paste0(searchString.x, " tweets from ", since.date, " until ", until.date)) +
    scale_fill_gradient(low = "#92A0CD", high = "#B32F2A", space = "Lab", na.value = "grey50", guide = "colourbar") +
        theme_bw()

#AI AMB tweet-flux

Here are the top few cities by tweet flux (in “twipermipeds”).

name tweet.flux n.tweets population
San Jose CA 105.80 1464 1976836
San Francisco CA 67.50 2200 4656132
Seattle WA 47.22 1234 3733580
Boston MA 39.74 1328 4774321
Orlando FL 28.19 471 2387138
Austin TX 21.42 300 2000860
Nashville TN 18.97 243 1830345
Denver CO 18.93 373 2814330
Los Angeles CA 17.20 1606 13340068
New York NY 16.70 2360 20182305
San Diego CA 14.59 337 3299521
WASHINGTON DC 12.25 523 6097684
Phoenix AZ 10.59 339 4574531
Chicago IL 7.64 511 9551031
Portland OR 7.47 125 2389228

#AI AMB tweet count

Here are the top few cities sorted by raw tweets, again with major metro areas leading. Note that some other cities, like Chicago, have a large number of tweets but a lower flux because of their higher population.

name tweet.flux n.tweets population
New York NY 16.70 2360 20182305
San Francisco CA 67.50 2200 4656132
Los Angeles CA 17.20 1606 13340068
San Jose CA 105.80 1464 1976836
Boston MA 39.74 1328 4774321
Seattle WA 47.22 1234 3733580
WASHINGTON DC 12.25 523 6097684
Chicago IL 7.64 511 9551031
Orlando FL 28.19 471 2387138
Denver CO 18.93 373 2814330
Phoenix AZ 10.59 339 4574531
San Diego CA 14.59 337 3299521
Austin TX 21.42 300 2000860
Atlanta GA 6.28 251 5710795
Nashville TN 18.97 243 1830345