Answer Key
\[s= \frac{24^\circ}{360^\circ}\cdot2\pi(13\text{ in}) = 5.4 \text{ in}\]
\[4.4 \text{ in}= \frac{\theta}{360^\circ}\cdot2\pi(5\text{ in})\]
\[\theta=\frac{4.4 \text{ in}}{2\pi(5\text{ in})}\cdot360^\circ = 50.42 ^\circ\]
\[s=\theta r = \frac{\pi}{2}(11.5\text{ cm})=18.06 \text{ cm}\]
\[k=\frac{14^\circ}{360^\circ}\pi (2.2 \text{ cm})^2 = 0.59 \text{ cm}^2\]
\[k=\frac{50^\circ}{360^\circ}(36 \pi \text{ m}^2)= 5 \pi \text{ m}^2\]
\[1 \text{ mi}=\theta(15\text{ in})\] \[\theta = \frac{1 \text{ mi}}{15\text{ in}}= \frac{1 \text{ mi}}{15\text{ in}}\cdot\frac{12\text{ in}}{1\text{ ft}}\cdot\frac{5280\text{ ft}}{1\text{ mi}} \approx 4224 \text{ radians}\]
\[av=\frac{78.6 \text{ rot}}{1 \text{ min}}\cdot\frac{2\pi \text{ radians}}{1 \text{ rot}}\cdot\frac{1 \text{ min}}{60 \text{ sec}}\approx 8.23 \text{ rad/sec}\]
\[\text{rpm} = \frac{57 \text{ rad}}{1 \text{ sec}}\cdot \frac{1 \text{ rot}}{2\pi \text{ rad}}\cdot \frac{60 \text{ sec}}{1 \text{ min}} \approx 544.31 \text{ rpm}\]
\[\frac{300^\circ}{1 \text{ sec}}\cdot\frac{1 \text{ rot}}{360^\circ}\cdot\frac{60 \text{ sec}}{1 \text{ min}} = 50 \text{ rpm}\]
\[\frac{1000 \text{ rot}}{1 \text{ min}}\cdot\frac{2\pi \text{ rad}}{1\text{ rot}}\cdot\frac{1 \text{ min}}{60 \text{ sec}} \approx 104.7 \text{ rad/sec}\]