library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(knitr)
NJ <- read.csv("template.csv", header = TRUE, stringsAsFactors = FALSE)
View(NJ)
str(NJ)
## 'data.frame': 25 obs. of 19 variables:
## $ Unemployment.by.race.in.2013: chr "" "Elizabeth" "" "New Brunswick" ...
## $ X : chr "" "Women" "Men" "Women" ...
## $ X.1 : chr "" "" "" "" ...
## $ X.2 : chr "White non-Hispanic" "0.163" "0.069" "0.049" ...
## $ X.3 : chr "\nBlack residents" "0.195" "0.182" "0.17" ...
## $ X.4 : chr "" "" "" "" ...
## $ X.5 : chr "Asian residents" "0.09" "0.03" "0.082" ...
## $ X.6 : chr "other race residents" "0.076" "0.118" "0.088" ...
## $ X.7 : logi NA NA NA NA NA NA ...
## $ X.8 : chr "two or more race residents" "33.6" "0.148" "0.227" ...
## $ X.9 : chr "Hispanic or Latino residents" "0.099" "0.085" "0.113" ...
## $ X.10 : logi NA NA NA NA NA NA ...
## $ X.11 : chr "American Indian and Alaska Native" "0.67" "0.055" "" ...
## $ X.12 : chr "" "0.049847143" "0.098142857" "0.1215" ...
## $ X.13 : logi NA NA NA NA NA NA ...
## $ X.14 : chr "" "Elizabeth" "" "New Brunswick" ...
## $ X.15 : chr "" "" "" "" ...
## $ X.16 : logi NA NA NA NA NA NA ...
## $ X.17 : chr "" "" "" "" ...
BigNJ <- read.csv("NewJersey.csv", header = TRUE, stringsAsFactors = FALSE)
kable(BigNJ)
New Brunswick |
57035 |
54578 |
4.5 |
48.8 |
45.4 |
16.0 |
7.6 |
49.9 |
26.8 |
38.6 |
15053 |
1370 |
13866 |
3.48 |
73.0 |
57.4 |
62.4 |
20.5 |
31.2 |
60.0 |
52.9 |
381357 |
751088 |
179461 |
3196 |
24.9 |
38399 |
14119 |
34.9 |
2126 |
1325 |
590 |
1077 |
875 |
10556.9 |
5.23 |
7.1 |
32 |
0.11 |
0.09 |
0.26 |
0.49 |
346.8 |
-0.1148545 |
Trenton |
84225 |
84910 |
-0.8 |
48.4 |
26.6 |
52.0 |
1.2 |
33.7 |
13.5 |
23.6 |
33035 |
991 |
27998 |
2.83 |
84.0 |
36.9 |
71.3 |
10.7 |
25.0 |
61.6 |
58.8 |
NA |
745596 |
341612 |
4044 |
23.6 |
35647 |
17021 |
28.4 |
4006 |
2036 |
1604 |
2392 |
1341 |
11102.6 |
7.65 |
37.9 |
27.3 |
478 |
561 |
971 |
1032 |
496.3 |
-0.2951285 |
Jersey City |
264290 |
247643 |
6.7 |
50.6 |
32.7 |
25.8 |
23.7 |
27.6 |
21.5 |
39.8 |
108720 |
1187 |
96634 |
2.62 |
85.4 |
52.5 |
85.0 |
42.5 |
20.5 |
68.8 |
62.1 |
857582 |
12481747 |
2568076 |
10093 |
35.6 |
58907 |
32791 |
19.0 |
23681 |
12383 |
9196 |
13600 |
8993 |
16736.3 |
14.79 |
9.2 |
13.5 |
239 |
270 |
341 |
1078 |
249.5 |
-0.5452889 |
Elizabeth |
129007 |
124969 |
3.2 |
50.4 |
54.6 |
21.1 |
2.1 |
59.5 |
18.2 |
47.1 |
45516 |
1069 |
39273 |
3.18 |
85.2 |
75.1 |
73.1 |
11.8 |
29.6 |
70.7 |
65.6 |
935403 |
2824024 |
1489177 |
11776 |
26.7 |
43966 |
19069 |
19.2 |
11483 |
6524 |
4105 |
7727 |
3319 |
10144.4 |
12.32 |
NA |
|
|
|
|
|
|
NA |
Newark |
281944 |
277149 |
1.7 |
50.5 |
26.3 |
52.4 |
1.6 |
33.8 |
11.6 |
27.9 |
109520 |
978 |
91771 |
2.89 |
86.2 |
46.1 |
71.4 |
13.3 |
28.2 |
63.3 |
61.2 |
3139443 |
5373530 |
2173876 |
7827 |
33.9 |
34012 |
16828 |
29.9 |
22800 |
10637 |
10369 |
16113 |
5745 |
11458.2 |
24.19 |
NA |
|
|
|
|
|
|
NA |
Paterson |
147754 |
146199 |
1.1 |
51.7 |
34.7 |
31.7 |
3.3 |
57.6 |
9.2 |
33.1 |
47946 |
1116 |
43462 |
3.32 |
90.1 |
61.7 |
72.2 |
10.7 |
26.7 |
57.2 |
52.9 |
1167948 |
1075168 |
849783 |
5852 |
22.9 |
33964 |
16259 |
28.4 |
10323 |
5328 |
4388 |
7413 |
2657 |
17346.8 |
8.43 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
City |
New Brunswick |
Trenton |
Jersey City |
Elizabeth |
Newark |
Paterson |
NA |
New Brunswick |
Trenton |
Jersey City |
Elizabeth |
Newark |
Paterson |
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
PopulationEst2015 |
57035 |
84225 |
264290 |
129007 |
281944 |
147754 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Population2010 |
54578 |
84910 |
247643 |
124969 |
277149 |
146199 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
PopulationCh 20102015 |
4.5 |
-0.8 |
6.7 |
3.2 |
1.7 |
1.1 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Female2010 |
48.8 |
48.4 |
50.6 |
50.4 |
50.5 |
51.7 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
White2010 |
45.4 |
26.6 |
32.7 |
54.6 |
26.3 |
34.7 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Black2010 |
16 |
52 |
25.8 |
21.1 |
52.4 |
31.7 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Asian |
7.6 |
1.2 |
23.7 |
2.1 |
1.6 |
3.3 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Hispanic |
49.9 |
33.7 |
27.6 |
59.5 |
33.8 |
57.6 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
White |
26.8 |
13.5 |
21.5 |
18.2 |
11.6 |
9.2 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Foreignborn |
38.6 |
23.6 |
39.8 |
47.1 |
27.9 |
33.1 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
HousingUnits |
15053 |
33035 |
108720 |
45516 |
109520 |
47946 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Medianrent2010-2014 |
1370 |
991 |
1187 |
1069 |
978 |
1116 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Households |
13866 |
27998 |
96634 |
39273 |
91771 |
43462 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
PerHousehold |
3.48 |
2.83 |
2.62 |
3.18 |
2.89 |
3.32 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
1YrSameResidence |
73 |
84 |
85.4 |
85.2 |
86.2 |
90.1 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
OtherLanguageAt Home |
57.4 |
36.9 |
52.5 |
75.1 |
46.1 |
61.7 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Highschoolgradorhigher |
62.4 |
71.3 |
85 |
73.1 |
71.4 |
72.2 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Bachelor’s |
20.5 |
10.7 |
42.5 |
11.8 |
13.3 |
10.7 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
PersonswoutInsurance |
31.2 |
25 |
20.5 |
29.6 |
28.2 |
26.7 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Incivilianlaborforce |
60 |
61.6 |
68.8 |
70.7 |
63.3 |
57.2 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
CivilianlaborforceFemale |
52.9 |
58.8 |
62.1 |
65.6 |
61.2 |
52.9 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
TotalManufacturersShipments |
381357 |
NA |
857582 |
935403 |
3139443 |
1167948 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
MerchantWholesalerSales |
751088 |
745596 |
12481747 |
2824024 |
5373530 |
1075168 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
TotalRetailSales |
179461 |
341612 |
2568076 |
1489177 |
2173876 |
849783 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Total retail sales per capita |
3196 |
4044 |
10093 |
11776 |
7827 |
5852 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Mean travel time to work minutes |
24.9 |
23.6 |
35.6 |
26.7 |
33.9 |
22.9 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Median household income 2014 |
38399 |
35647 |
58907 |
43966 |
34012 |
33964 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Per capita income2014 |
14119 |
17021 |
32791 |
19069 |
16828 |
16259 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
PersonsInPoverty |
34.9 |
28.4 |
19 |
19.2 |
29.9 |
28.4 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
All firms2012 |
2126 |
4006 |
23681 |
11483 |
22800 |
10323 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Men-owned firms2012 |
1325 |
2036 |
12383 |
6524 |
10637 |
5328 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Women-owned firms2012 |
590 |
1604 |
9196 |
4105 |
10369 |
4388 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Minority-owned firms2012 |
1077 |
2392 |
13600 |
7727 |
16113 |
7413 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Nonminority-owned firms2012 |
875 |
1341 |
8993 |
3319 |
5745 |
2657 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Population per square mile, 2010 |
10556.9 |
11102.6 |
16736.3 |
10144.4 |
11458.2 |
17346.8 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Land area in square miles, 2010 |
5.23 |
7.65 |
14.79 |
12.32 |
24.19 |
8.43 |
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
MurderPer100K |
7.1 |
37.9 |
9.2 |
|
|
|
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Rapes |
32 |
27.3 |
13.5 |
|
|
|
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Robberies |
0.11 |
478 |
239 |
|
|
|
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Assaults |
0.09 |
561 |
270 |
|
|
|
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Burglaries |
0.26 |
971 |
341 |
|
|
|
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Thefts |
0.49 |
1032 |
1078 |
|
|
|
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
CityCrimeIndex |
346.8 |
496.3 |
249.5 |
|
|
|
NA |
|
|
|
|
|
|
NA |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
ChangeCIin10Yr |
-0.114854518 |
-0.295128533 |
-0.545288865 |
|
|
|
NA |
|
|
|
|
|
|
NA |
library(ggvis)
Violence <- read.csv("CrimeInNJ.csv", header=TRUE, stringsAsFactors=FALSE)
kable(Violence)
New Brunswick |
7.1 |
32.0 |
395.1 |
309.6 |
930.7 |
1742.2 |
142.4 |
19.6 |
346.8 |
-0.1148545 |
Trenton |
37.9 |
27.3 |
477.9 |
560.9 |
971.3 |
1031.7 |
403.2 |
30.8 |
496.3 |
-0.2951285 |
Jersey City |
9.2 |
13.5 |
238.5 |
270.0 |
341.1 |
1078.4 |
211.1 |
14.2 |
249.5 |
-0.5452889 |
Elizabeth |
10.1 |
26.5 |
494.0 |
359.2 |
651.4 |
1658.8 |
686.4 |
10.1 |
448.5 |
0.0099077 |
Newark |
33.3 |
17.6 |
688.6 |
338.2 |
622.0 |
1365.1 |
864.2 |
14.0 |
525.0 |
-0.1539081 |
Paterson |
16.4 |
17.1 |
418.9 |
363.5 |
792.0 |
1339.6 |
507.9 |
8.9 |
416.6 |
-0.0151300 |
E. Orange |
3.1 |
23.2 |
288.8 |
392.2 |
480.2 |
849.3 |
369.1 |
21.6 |
305.6 |
-0.6560108 |
names(Violence)
## [1] "City" "Murder_per_100K" "Rape_per_100K"
## [4] "Robberies_per_100K" "Assaults_per_100K" "Burglaries_per_100K"
## [7] "Thefts_per_100K" "Auto_Theft_per_100K" "Arson_per_100K"
## [10] "Crime_Index_Av_275" "Ten_YearChange"
Violence %>% select(City, Crime_Index_Av_275,Ten_YearChange ) %>% arrange(Ten_YearChange)
## City Crime_Index_Av_275 Ten_YearChange
## 1 E. Orange 305.6 -0.656010806
## 2 Jersey City 249.5 -0.545288865
## 3 Trenton 496.3 -0.295128533
## 4 Newark 525.0 -0.153908139
## 5 New Brunswick 346.8 -0.114854518
## 6 Paterson 416.6 -0.015130024
## 7 Elizabeth 448.5 0.009907678
Violence %>% select(City,Murder_per_100K) %>% arrange(desc(Murder_per_100K))
## City Murder_per_100K
## 1 Trenton 37.9
## 2 Newark 33.3
## 3 Paterson 16.4
## 4 Elizabeth 10.1
## 5 Jersey City 9.2
## 6 New Brunswick 7.1
## 7 E. Orange 3.1
Violence %>% select(City,Rape_per_100K) %>% arrange(desc(Rape_per_100K))
## City Rape_per_100K
## 1 New Brunswick 32.0
## 2 Trenton 27.3
## 3 Elizabeth 26.5
## 4 E. Orange 23.2
## 5 Newark 17.6
## 6 Paterson 17.1
## 7 Jersey City 13.5
Violence %>% select(City,Assaults_per_100K) %>% arrange(desc(Assaults_per_100K))
## City Assaults_per_100K
## 1 Trenton 560.9
## 2 E. Orange 392.2
## 3 Paterson 363.5
## 4 Elizabeth 359.2
## 5 Newark 338.2
## 6 New Brunswick 309.6
## 7 Jersey City 270.0
Violence %>% select(City,Robberies_per_100K) %>% arrange(desc(Robberies_per_100K))
## City Robberies_per_100K
## 1 Newark 688.6
## 2 Elizabeth 494.0
## 3 Trenton 477.9
## 4 Paterson 418.9
## 5 New Brunswick 395.1
## 6 E. Orange 288.8
## 7 Jersey City 238.5
Violence %>% ggvis(x = ~ City, y = ~ Murder_per_100K) %>% layer_bars()
library(tidyr)
V2 <- gather(Violence, "Crime", "Number", Murder_per_100K:Arson_per_100K) %>% select(City, Crime, Number, Crime_Index_Av_275, Ten_YearChange) %>% arrange(desc(Crime))
kable(V2)
New Brunswick |
Thefts_per_100K |
1742.2 |
346.8 |
-0.1148545 |
Trenton |
Thefts_per_100K |
1031.7 |
496.3 |
-0.2951285 |
Jersey City |
Thefts_per_100K |
1078.4 |
249.5 |
-0.5452889 |
Elizabeth |
Thefts_per_100K |
1658.8 |
448.5 |
0.0099077 |
Newark |
Thefts_per_100K |
1365.1 |
525.0 |
-0.1539081 |
Paterson |
Thefts_per_100K |
1339.6 |
416.6 |
-0.0151300 |
E. Orange |
Thefts_per_100K |
849.3 |
305.6 |
-0.6560108 |
New Brunswick |
Robberies_per_100K |
395.1 |
346.8 |
-0.1148545 |
Trenton |
Robberies_per_100K |
477.9 |
496.3 |
-0.2951285 |
Jersey City |
Robberies_per_100K |
238.5 |
249.5 |
-0.5452889 |
Elizabeth |
Robberies_per_100K |
494.0 |
448.5 |
0.0099077 |
Newark |
Robberies_per_100K |
688.6 |
525.0 |
-0.1539081 |
Paterson |
Robberies_per_100K |
418.9 |
416.6 |
-0.0151300 |
E. Orange |
Robberies_per_100K |
288.8 |
305.6 |
-0.6560108 |
New Brunswick |
Rape_per_100K |
32.0 |
346.8 |
-0.1148545 |
Trenton |
Rape_per_100K |
27.3 |
496.3 |
-0.2951285 |
Jersey City |
Rape_per_100K |
13.5 |
249.5 |
-0.5452889 |
Elizabeth |
Rape_per_100K |
26.5 |
448.5 |
0.0099077 |
Newark |
Rape_per_100K |
17.6 |
525.0 |
-0.1539081 |
Paterson |
Rape_per_100K |
17.1 |
416.6 |
-0.0151300 |
E. Orange |
Rape_per_100K |
23.2 |
305.6 |
-0.6560108 |
New Brunswick |
Murder_per_100K |
7.1 |
346.8 |
-0.1148545 |
Trenton |
Murder_per_100K |
37.9 |
496.3 |
-0.2951285 |
Jersey City |
Murder_per_100K |
9.2 |
249.5 |
-0.5452889 |
Elizabeth |
Murder_per_100K |
10.1 |
448.5 |
0.0099077 |
Newark |
Murder_per_100K |
33.3 |
525.0 |
-0.1539081 |
Paterson |
Murder_per_100K |
16.4 |
416.6 |
-0.0151300 |
E. Orange |
Murder_per_100K |
3.1 |
305.6 |
-0.6560108 |
New Brunswick |
Burglaries_per_100K |
930.7 |
346.8 |
-0.1148545 |
Trenton |
Burglaries_per_100K |
971.3 |
496.3 |
-0.2951285 |
Jersey City |
Burglaries_per_100K |
341.1 |
249.5 |
-0.5452889 |
Elizabeth |
Burglaries_per_100K |
651.4 |
448.5 |
0.0099077 |
Newark |
Burglaries_per_100K |
622.0 |
525.0 |
-0.1539081 |
Paterson |
Burglaries_per_100K |
792.0 |
416.6 |
-0.0151300 |
E. Orange |
Burglaries_per_100K |
480.2 |
305.6 |
-0.6560108 |
New Brunswick |
Auto_Theft_per_100K |
142.4 |
346.8 |
-0.1148545 |
Trenton |
Auto_Theft_per_100K |
403.2 |
496.3 |
-0.2951285 |
Jersey City |
Auto_Theft_per_100K |
211.1 |
249.5 |
-0.5452889 |
Elizabeth |
Auto_Theft_per_100K |
686.4 |
448.5 |
0.0099077 |
Newark |
Auto_Theft_per_100K |
864.2 |
525.0 |
-0.1539081 |
Paterson |
Auto_Theft_per_100K |
507.9 |
416.6 |
-0.0151300 |
E. Orange |
Auto_Theft_per_100K |
369.1 |
305.6 |
-0.6560108 |
New Brunswick |
Assaults_per_100K |
309.6 |
346.8 |
-0.1148545 |
Trenton |
Assaults_per_100K |
560.9 |
496.3 |
-0.2951285 |
Jersey City |
Assaults_per_100K |
270.0 |
249.5 |
-0.5452889 |
Elizabeth |
Assaults_per_100K |
359.2 |
448.5 |
0.0099077 |
Newark |
Assaults_per_100K |
338.2 |
525.0 |
-0.1539081 |
Paterson |
Assaults_per_100K |
363.5 |
416.6 |
-0.0151300 |
E. Orange |
Assaults_per_100K |
392.2 |
305.6 |
-0.6560108 |
New Brunswick |
Arson_per_100K |
19.6 |
346.8 |
-0.1148545 |
Trenton |
Arson_per_100K |
30.8 |
496.3 |
-0.2951285 |
Jersey City |
Arson_per_100K |
14.2 |
249.5 |
-0.5452889 |
Elizabeth |
Arson_per_100K |
10.1 |
448.5 |
0.0099077 |
Newark |
Arson_per_100K |
14.0 |
525.0 |
-0.1539081 |
Paterson |
Arson_per_100K |
8.9 |
416.6 |
-0.0151300 |
E. Orange |
Arson_per_100K |
21.6 |
305.6 |
-0.6560108 |
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:ggvis':
##
## resolution
Index <- read.csv("OverallCrimeNJ.csv", header = TRUE, stringsAsFactors = FALSE)
V3 <- gather(Index, "Measure", "Number", Crime_Index_Av_275:Ten_YearChange)
V3
## City Measure Number
## 1 New Brunswick Crime_Index_Av_275 346.8
## 2 Trenton Crime_Index_Av_275 496.3
## 3 Jerey City Crime_Index_Av_275 249.5
## 4 Elizabeth Crime_Index_Av_275 448.5
## 5 Newark Crime_Index_Av_275 525
## 6 Paterson Crime_Index_Av_275 416.6
## 7 E. Orange Crime_Index_Av_275 305.6
## 8 New Brunswick Ten_YearChange -11%
## 9 Trenton Ten_YearChange -30%
## 10 Jerey City Ten_YearChange -55%
## 11 Elizabeth Ten_YearChange 1%
## 12 Newark Ten_YearChange -15%
## 13 Paterson Ten_YearChange -2%
## 14 E. Orange Ten_YearChange -66%
ggplot(V3, aes(factor(City), Number, fill =Measure))+
geom_bar(stat="identity", position = "dodge") +
scale_fill_brewer(palette = "Set1")

ViolCr <- read.csv("NJViolentCrime.csv", header = TRUE, stringsAsFactors = FALSE)
VC <- gather(ViolCr, "Crime", "Number", Murder_per_100K:Assaults_per_100K)
VC
## City Crime Number
## 1 New Brunswick Murder_per_100K 7.1
## 2 Trenton Murder_per_100K 37.9
## 3 Jersey City Murder_per_100K 9.2
## 4 Elizabeth Murder_per_100K 10.1
## 5 Newark Murder_per_100K 33.3
## 6 Paterson Murder_per_100K 16.4
## 7 E. Orange Murder_per_100K 3.1
## 8 New Brunswick Rape_per_100K 32.0
## 9 Trenton Rape_per_100K 27.3
## 10 Jersey City Rape_per_100K 13.5
## 11 Elizabeth Rape_per_100K 26.5
## 12 Newark Rape_per_100K 17.6
## 13 Paterson Rape_per_100K 17.1
## 14 E. Orange Rape_per_100K 23.2
## 15 New Brunswick Robberies_per_100K 395.1
## 16 Trenton Robberies_per_100K 477.9
## 17 Jersey City Robberies_per_100K 238.5
## 18 Elizabeth Robberies_per_100K 494.0
## 19 Newark Robberies_per_100K 688.6
## 20 Paterson Robberies_per_100K 418.9
## 21 E. Orange Robberies_per_100K 288.8
## 22 New Brunswick Assaults_per_100K 309.6
## 23 Trenton Assaults_per_100K 560.9
## 24 Jersey City Assaults_per_100K 270.0
## 25 Elizabeth Assaults_per_100K 359.2
## 26 Newark Assaults_per_100K 338.2
## 27 Paterson Assaults_per_100K 363.5
## 28 E. Orange Assaults_per_100K 392.2
ggplot(VC, aes(factor(City), Number, fill =Crime))+
geom_bar(stat="identity", position = "dodge") +
scale_fill_brewer(palette = "Set1")

library(ggplot2)
ggplot(V2, aes(factor(City), Number, fill = Crime)) +
geom_bar(stat="identity", position = "dodge") +
scale_fill_brewer(palette = "Set1")

NJSt <- read.csv("MasterCopy.csv", header = TRUE, stringsAsFactors = FALSE) %>% rename(City = People)
kable(head(NJSt), digits = 3)
Population2015 |
57035 |
84225 |
264290 |
129007 |
281944 |
147754 |
64949 |
Population2010 |
55181 |
84913 |
247597 |
124969 |
277140 |
146199 |
64270 |
Populationchange2010-2015 |
4.5 |
-0.8 |
6.7 |
3.2 |
1.7 |
1.1 |
1.3 |
PersonsUnder5_2010 |
7.2 |
7.9 |
7.1 |
8 |
7.5 |
8 |
7.2 |
PersonsUnder_18 years2010 |
21.1 |
25.1 |
21.1 |
25.6 |
25.6 |
27.9 |
25.7 |
PercentFemales |
0.488 |
0.484 |
0.506 |
0.504 |
0.505 |
0.517 |
0.552 |
TrMC <- t(NJSt)
kable(head(TrMC))
City |
Population2015 |
Population2010 |
Populationchange2010-2015 |
PersonsUnder5_2010 |
PersonsUnder_18 years2010 |
PercentFemales |
NumberFemales |
White2010 |
Percent White Count |
TotalWhiteCount |
Black2010 |
PercentBlack |
TotalBlackCount |
AmericanIndian2010 |
PercentAmericanIndian |
AmericanIndianCount |
AsianPercent2010 |
PercentAsian |
AsianCount |
TwoorMoreRaces 2010 |
PercentR2Races |
TwoRacesCount |
Hispanic2010 |
White alone, not Hispanic or Latino, percent, April 1, 2010 |
Total |
ForeignBorn2014 |
HousingUnits2010 |
Owner-occupied2014Rate |
MedianValueOwnerOcc2014 |
Median selected monthly owner costs -without a mortgage, 2010-2014 |
MedianGrossRent |
Households, 2010-2014 |
Persons per household, 2010-2014 |
Living in same house 1 year ago, percent of persons age 1 year+, 2010-2014 |
Language other than English spoken at home, percent of persons age 5 years+, 2010-2014 |
HSGradPercentunder25Yrs |
BAUnder25Yrs |
With a disability, under age 65 years, percent, 2010-2014 |
Persons without health insurance, under age 65 years, percent |
In civilian labor force, total, percent of population age 16 years+, 2010-2014 |
In civilian labor force, female, percent of population age 16 years+, 2010-2014 |
Total accommodation and food services sales, 2012 ($1,000) (c) |
Total health care and social assistance receipts/revenue, 2012 ($1,000) (c) |
Total manufacturers shipments, 2012 ($1,000) (c) |
Total merchant wholesaler sales, 2012 ($1,000) (c) |
Total retail sales, 2012 ($1,000) (c) |
Total retail sales per capita, 2012 (c) |
Mean travel time to work (minutes), workers age 16 years+, 2010-2014 |
Median household income (in 2014 dollars), 2010-2014 |
Per capita income in past 12 months (in 2014 dollars), 2010-2014 |
Persons in poverty, percent |
All firms, 2012 |
Men-owned firms, 2012 |
Women-owned firms, 2012 |
Minority-owned firms, 2012 |
Nonminority-owned firms, 2012 |
Veteran-owned firms, 2012 |
Nonveteran-owned firms, 2012 |
Population per square mile, 2010 |
Land area in square miles, 2010 |
FEMALE UNEMPLOYMENT |
NewBrunswick |
57035 |
55181 |
4.5 |
7.2 |
21.1 |
0.488 |
26,634.06 |
45.4 |
0.454 |
25,052.17 |
16 |
0.16 |
8,732.48 |
0.9 |
0.009 |
491.2 |
7.6 |
0.076 |
4147.928 |
4.4 |
0.044 |
2401.432 |
49.9 |
26.8 |
15,878.93 |
38.6 |
15053 |
21 |
240700 |
2107 |
1370 |
13866 |
3.48 |
73 |
0.574 |
0.624 |
20.5 |
3.9 |
31.2 |
60 |
52.9 |
127075 |
1458287 |
381357 |
751088 |
179461 |
3196 |
24.9 |
38399 |
14119 |
34.9 |
2126 |
1325 |
590 |
1077 |
875 |
124 |
1815 |
10556.9 |
5.23 |
0.107 |
Trenton |
84225 |
84913 |
-0.8 |
7.9 |
25.1 |
0.484 |
41,096.44 |
26.6 |
0.266 |
22,586.86 |
52 |
0.52 |
44,153.20 |
0.7 |
0.007 |
594.37 |
1.2 |
0.012 |
1018.92 |
4.1 |
0.041 |
3481.31 |
33.7 |
13.5 |
49,353.58 |
23.6 |
33035 |
38 |
113100 |
1472 |
991 |
27998 |
2.83 |
84 |
0.369 |
0.713 |
10.7 |
11.3 |
25 |
61.6 |
58.8 |
NA |
735324 |
NA |
745596 |
341612 |
4044 |
23.6 |
35647 |
17021 |
28.4 |
4006 |
2036 |
1604 |
2392 |
1341 |
373 |
3350 |
11102.6 |
7.65 |
0.1199 |
JerseyCity |
264290 |
247597 |
6.7 |
7.1 |
21.1 |
0.506 |
125,307.36 |
32.7 |
0.327 |
80,964.22 |
25.8 |
0.258 |
63,891.89 |
0.5 |
0.005 |
1,238.22 |
23.7 |
0.237 |
58691.391 |
4.4 |
0.044 |
10896.292 |
27.6 |
21.5 |
134,821.84 |
39.8 |
108720 |
29.9 |
323800 |
2651 |
1187 |
96634 |
2.62 |
85.4 |
0.525 |
0.85 |
42.5 |
6.7 |
20.5 |
68.8 |
62.1 |
422529 |
1073908 |
857582 |
12481747 |
2568076 |
10093 |
35.6 |
58907 |
32791 |
19 |
23681 |
12383 |
9196 |
13600 |
8993 |
1204 |
21509 |
16736.3 |
14.79 |
0.1157 |
Elizabeth |
129007 |
124969 |
3.2 |
8 |
25.6 |
0.504 |
62,984.38 |
54.6 |
0.546 |
68,233.07 |
21.1 |
0.211 |
26,368.46 |
0.8 |
0.008 |
999.75 |
2.1 |
0.021 |
2624.349 |
4.6 |
0.046 |
5748.574 |
59.5 |
18.2 |
35,847.72 |
47.1 |
45516 |
27.1 |
271400 |
2486 |
1069 |
39273 |
3.18 |
85.2 |
0.751 |
0.731 |
11.8 |
6.3 |
29.6 |
70.7 |
65.6 |
206476 |
554858 |
935403 |
2824024 |
1489177 |
11776 |
26.7 |
43966 |
19069 |
19.2 |
11483 |
6524 |
4105 |
7727 |
3319 |
592 |
10518 |
10144.4 |
12.32 |
0.0695 |
Newark |
281944 |
277140 |
1.7 |
7.5 |
25.6 |
0.505 |
139,960.25 |
26.3 |
0.263 |
72,887.82 |
52.4 |
0.524 |
145,226.08 |
0.6 |
0.006 |
1,662.89 |
1.6 |
0.016 |
4434.384 |
3.8 |
0.038 |
10531.662 |
33.8 |
11.6 |
161,959.40 |
27.9 |
109520 |
22.3 |
229600 |
2224 |
978 |
91771 |
2.89 |
86.2 |
0.461 |
0.714 |
13.3 |
13.1 |
28.2 |
63.3 |
61.2 |
582379 |
2119780 |
3139443 |
5373530 |
2173876 |
7827 |
33.9 |
34012 |
16828 |
29.9 |
22800 |
10637 |
10369 |
16113 |
5745 |
1398 |
20441 |
11458.2 |
24.19 |
0.0591 |
names(TrMC)
## NULL
library(ggvis)
Violence %>% ggvis(x = ~ City, y = ~ Assaults_per_100K)%>% layer_bars(stroke := "red", fill := "purple", width = .4)
VC %>%
ggvis(~City, ~Number, stroke = ~Crime) %>% layer_lines() %>% layer_points()