## set up search terms
searchString.x <- "#TrumpWon" # search term
n.x <- 3000 # number of tweets
radius <- "30mi" # radius around selected geo-location
duration.days <- 1 # how many days
since.date <- (Sys.Date() - duration.days) %>% as.character # calculated starting date
[1] "Using direct authentication"
Get city geo data from maps::cities
Use the twitteR::searchTwitter
command.
n.cities <- 40
Data collection for the top 40 cities (by population) in the U.S. This includes cities from New York to Nashville.
map.plot +
geom_point(aes(x = lon, y = lat, fill = tweet.flux, size = n.tweets), data=analyzed_df, pch=21, color = "#33333399") +
ggtitle(paste0(searchString.x, " tweets in ", duration.days," days since ", since.date, " r = ", radius)) +
scale_fill_gradient(low = "#BBBBFF", high = "#EE3300", space = "Lab", na.value = "grey50", guide = "colourbar")
Here are the top few cities by tweet flux (in “twipermipeds”).
name | tweet.flux | n.tweets | population |
---|---|---|---|
Nashville | 1002.54 | 1835 | 1830345 |
Sacramento | 394.87 | 898 | 2274194 |
Washington | 257.47 | 1570 | 6097684 |
Cincinnati | 178.89 | 386 | 2157719 |
Las Vegas | 175.90 | 372 | 2114801 |
Miami | 160.84 | 967 | 6012331 |
New York | 148.65 | 3000 | 20182305 |
Atlanta | 100.16 | 572 | 5710795 |
San Francisco | 86.55 | 403 | 4656132 |
Dallas | 78.14 | 555 | 7102796 |
Detroit | 70.43 | 303 | 4302043 |
Austin | 66.97 | 134 | 2000860 |
Los Angeles | 52.70 | 703 | 13340068 |
Seattle | 50.35 | 188 | 3733580 |
Boston | 49.22 | 235 | 4774321 |
Here are the top few cities sorted by raw tweets, again with major metro areas leading. Note that some other cities, like Chicago, have a large number of tweets but a lower flux because of their higher population.
name | tweet.flux | n.tweets | population |
---|---|---|---|
New York | 148.65 | 3000 | 20182305 |
Nashville | 1002.54 | 1835 | 1830345 |
Washington | 257.47 | 1570 | 6097684 |
Miami | 160.84 | 967 | 6012331 |
Sacramento | 394.87 | 898 | 2274194 |
Los Angeles | 52.70 | 703 | 13340068 |
Atlanta | 100.16 | 572 | 5710795 |
Dallas | 78.14 | 555 | 7102796 |
San Francisco | 86.55 | 403 | 4656132 |
Cincinnati | 178.89 | 386 | 2157719 |
Las Vegas | 175.90 | 372 | 2114801 |
Detroit | 70.43 | 303 | 4302043 |
Boston | 49.22 | 235 | 4774321 |
Chicago | 22.82 | 218 | 9551031 |
Seattle | 50.35 | 188 | 3733580 |