Jon Duan
ECON 595 Agriculture Economics Project
Cost is fixed
Yield is normally distributed
Price following a stochastic process.
Five major crops in SK: Wheat, Oats, Barley, Flax, Canola
The monthly price data is from Statistics Canada "Estimated areas, yield, production, average farm price and total farm value of principal field crops, in imperial units, annually 001-0017".
The annual yield data is from Statistics Canada "Farm product prices, crops and livestock, monthly Description 002-0043"
The cost per acre data is from Government of Saskatchewan "Crop Planning Guide"
The farm data from Statistics Canada The 2011 Census of Agriculture
X | cost | pr | yld | obs |
---|---|---|---|---|
wheat | 156.46 | 6.59 | 47.80 | 768.95 |
barley | 147.37 | 3.77 | 64.00 | 138.61 |
oats | 140.59 | 2.80 | 99.10 | 89.07 |
flax | 148.14 | 13.36 | 23.70 | 58.88 |
canola | 212.59 | 13.75 | 39.50 | 612.49 |
Advantage:
Three stages ( formalized by Howitt (1995a) )
\[Max: R = \sum_{k=1}^n ( p_k x_k y_k - c_k x_k)\] \[Subjet \; to: \sum_{k=1}^n x_k \le 1668 \;\; (1)\] \[x_k \ge 0\] \[x_k \le x_k^{obs} + 0.01,\; \forall k; \; \; [\lambda_k] \;\; (2)\]
X | LAMDA | ALPH | BETA |
---|---|---|---|
wheat | 147.83 | 8.63 | 0.38 |
barley | 83.20 | 64.17 | 1.21 |
oats | 126.18 | 14.41 | 2.83 |
flax | 157.78 | -9.64 | 5.35 |
canola | 319.83 | -107.23 | 1.04 |
Based on these cost functions \(a_k x_k - b_k x_k^2\), if we want to evaluate the impact of policy,need to look at \(p_k x_k y_k\)
where \(C_i\) is the variable cost associated with each crop
\(Y_{ij}\) is crop yield generated from a normal distribution
Wheat | Oats | Barley | Flax | Canola | |
---|---|---|---|---|---|
meanyield | 39.06 | 79.54 | 54.94 | 22.04 | 32.34 |
Wheat | Oats | Barley | Flax | Canola | |
---|---|---|---|---|---|
Detrendsd | 3.68 | 6.42 | 6.88 | 1.96 | 3.51 |
Wheat | Oats | Barley | Flax | Canola | |
---|---|---|---|---|---|
meanprice | 6.59 | 2.80 | 3.77 | 13.37 | 13.75 |
Recall \[P_{ij} = P_{i0} e^{((\mu - \frac{1}{2}) \frac{7}{12} + \sigma N(0,1) \sqrt{\frac{7}{12}})}\]
Geometric Brownian Model follow this equation: \[dS_t = \mu S_t dt + \mu S_t dW_t\]
sigma | mu | |
---|---|---|
Wheat | -0.08809182 | 0.004406199 |
Oats | -0.07589197 | 0.004977825 |
Barley | -0.06495353 | 0.004013233 |
Flax | -0.06686761 | 0.004150727 |
Canola | -0.04872830 | 0.003099730 |
\[Min: \sigma_p^2 = \frac{1}{m} \sum_{j=1}^m ( \pi_j - E[\pi] )^2\] \[Subjet \; to: \sum_{i=1}^n x_k = 1668 \; \] \[\sum_{i=1}^n E[R_i] x_i = K \; (2)\]
\[\sum_{i=1}^n R_{1,i} x_i + Max[Z - \sum_{i=1}^n R_{1,i} x_i, \; 0]- \frac{\delta}{m} \sum_{j=1}^m Max[Z - \sum_{i=1}^n R_{j,i} x_i, \; 0] - \pi_1 = 0 \] \[\sum_{i=1}^n R_{m,i} x_i + Max[Z - \sum_{i=1}^n R_{m,i} x_i, \; 0]- \frac{\delta}{m} \sum_{j=1}^m Max[Z - \sum_{i=1}^n R_{j,i} x_i, \; 0] - \pi_m = 0 \]