It’s the homework from class of EIA, analying the relations between x1,x2,x3,x4 and y1, y2.
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
The summary of the data shows below:
homework<-read.csv("C:\\Users\\hekai.BEAN_PC\\Desktop\\homework.csv",header=T)
summary(homework)
## x1 x2 x3 x4
## Min. : 4.450 Min. :19.76 Min. : 56.37 Min. : 3.740
## 1st Qu.: 7.930 1st Qu.:31.60 1st Qu.:132.46 1st Qu.: 6.840
## Median : 9.180 Median :37.85 Median :205.51 Median : 8.690
## Mean : 9.407 Mean :39.98 Mean :209.84 Mean : 9.014
## 3rd Qu.:11.850 3rd Qu.:45.55 3rd Qu.:246.21 3rd Qu.:10.570
## Max. :13.300 Max. :86.12 Max. :524.94 Max. :23.620
## y1 y2
## Min. : 73.67 Min. :-65.10
## 1st Qu.:356.58 1st Qu.:-37.30
## Median :496.21 Median :-29.50
## Mean :520.59 Mean :-29.42
## 3rd Qu.:710.54 3rd Qu.:-19.45
## Max. :986.08 Max. : 4.10
cors<-c(cor(homework$x1,homework$y1),cor(homework$x2,homework$y1),cor(homework$x3,homework$y1),cor(homework$x4,homework$y1),
cor(homework$x1,homework$y2),cor(homework$x2,homework$y2),cor(homework$x3,homework$y2),cor(homework$x4,homework$y2))
cors
## [1] 0.9259639 -0.7357892 -0.5850885 0.2375979 -0.6777324 0.7119994
## [7] 0.3761776 -0.1654430
tests<-list(cor.test(homework$x1,homework$y1),cor.test(homework$x2,homework$y1),cor.test(homework$x3,homework$y1),cor.test(homework$x4,homework$y1),
cor.test(homework$x1,homework$y2),cor.test(homework$x2,homework$y2),cor.test(homework$x3,homework$y2),cor.test(homework$x4,homework$y2))
tests
## [[1]]
##
## Pearson's product-moment correlation
##
## data: homework$x1 and homework$y1
## t = 32.624, df = 177, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9017630 0.9443773
## sample estimates:
## cor
## 0.9259639
##
##
## [[2]]
##
## Pearson's product-moment correlation
##
## data: homework$x2 and homework$y1
## t = -14.455, df = 177, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7965029 -0.6603856
## sample estimates:
## cor
## -0.7357892
##
##
## [[3]]
##
## Pearson's product-moment correlation
##
## data: homework$x3 and homework$y1
## t = -9.5985, df = 177, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6739269 -0.4795712
## sample estimates:
## cor
## -0.5850885
##
##
## [[4]]
##
## Pearson's product-moment correlation
##
## data: homework$x4 and homework$y1
## t = 3.2542, df = 177, p-value = 0.001362
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.09420871 0.37132971
## sample estimates:
## cor
## 0.2375979
##
##
## [[5]]
##
## Pearson's product-moment correlation
##
## data: homework$x1 and homework$y2
## t = -12.262, df = 177, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7498647 -0.5896767
## sample estimates:
## cor
## -0.6777324
##
##
## [[6]]
##
## Pearson's product-moment correlation
##
## data: homework$x2 and homework$y2
## t = 13.49, df = 177, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6312488 0.7774791
## sample estimates:
## cor
## 0.7119994
##
##
## [[7]]
##
## Pearson's product-moment correlation
##
## data: homework$x3 and homework$y2
## t = 5.4015, df = 177, p-value = 2.108e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2429077 0.4955102
## sample estimates:
## cor
## 0.3761776
##
##
## [[8]]
##
## Pearson's product-moment correlation
##
## data: homework$x4 and homework$y2
## t = -2.2318, df = 177, p-value = 0.02688
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3047209 -0.0192375
## sample estimates:
## cor
## -0.165443
library(graphics)
par(mfcol=c(2,4),mar = c(1,1,1,1)+0.1)
Lab.palette <- colorRampPalette(c("blue", "orange", "red"), space = "Lab")
pal<-colorRamp(c("red","blue"))
with(homework,smoothScatter(x1~y1,colramp= Lab.palette))
abline(lm(x1~y1,homework),lwd=2,col="red")
with(homework,smoothScatter(x2~y1,colramp= Lab.palette))
abline(lm(x2~y1,homework),lwd=2,col="red")
with(homework,smoothScatter(x3~y1,colramp= Lab.palette))
abline(lm(x3~y1,homework),lwd=2,col="red")
with(homework,smoothScatter(x4~y1,colramp= Lab.palette))
abline(lm(x4~y1,homework),lwd=2,col="red")
with(homework,smoothScatter(x1~y2,colramp= Lab.palette))
abline(lm(x1~y2,homework),lwd=2,col="red")
with(homework,smoothScatter(x2~y2,colramp= Lab.palette))
abline(lm(x2~y2,homework),lwd=2,col="red")
with(homework,smoothScatter(x3~y2,colramp= Lab.palette))
abline(lm(x3~y2,homework),lwd=2,col="red")
with(homework,smoothScatter(x4~y2,colramp= Lab.palette))
abline(lm(x4~y2,homework),lwd=2,col="red")
{x1,y1} and {x2,y2} are significant positive correlations; {x2,y1},{x3,y1} and {x1,y2} are significant negative correlations