Setting the environment and loading data

rm(list=ls(all=TRUE)) 

setwd("D:/emre/SkyDrive/makale/Electoral Integrity/Initial Data/Veriler")
library(foreign)
library(ggplot2)
library(sjPlot)
library(pander)
ei_v1 <- read.dta("combined_v1.dta")

Selecting subset of variables

mod1 <- subset (ei_v1, 
                select=c(NewspaperIdeology,
                         ElectoralViolence, 
                         Election, NewsType, DateCode))

Releveling the reference category to center for newspapers

NewspaperIdeology.f <-relevel(mod1$NewspaperIdeology, 
                              ref = "Center")

The descriptives

frq1 <- sjt.frq(mod1$ElectoralViolence, no.output = TRUE)
pander(frq1)
## Warning in pander.default(frq1): No pander.method for "sjTable", reverting
## to default.No pander.method for "sjtfrq", reverting to default.
sjp.frq(mod1$ElectoralViolence)

frq2 <- sjt.frq(ei_v1$Newspaper, no.output = TRUE)
pander(frq2)
## Warning in pander.default(frq2): No pander.method for "sjTable", reverting
## to default.No pander.method for "sjtfrq", reverting to default.
sjp.frq(ei_v1$Newspaper)

frq3 <- sjt.xtab(ei_v1$Newspaper, ei_v1$ElectoralViolence, no.output = TRUE)
## Warning in chisq.test(ftab): Chi-squared approximation may be incorrect
pander(frq3)
## Warning in pander.default(frq3): No pander.method for "sjTable", reverting
## to default.No pander.method for "sjtxtab", reverting to default.
chisq.test(ei_v1$Newspaper, ei_v1$ElectoralViolence)
## 
##  Pearson's Chi-squared test
## 
## data:  ei_v1$Newspaper and ei_v1$ElectoralViolence
## X-squared = 63.458, df = 9, p-value = 2.876e-10
sjp.xtab(ei_v1$Newspaper, ei_v1$ElectoralViolence ,  
         geom.size = 0.5,  show.n = F, show.total = F)

First Model

model1 <- glm(ElectoralViolence~NewspaperIdeology.f
              +Election+NewsType+DateCode, data = mod1, family = binomial)

Plots

sjp.glm(model1)
## Waiting for profiling to be done...

sjp.glm(model1, type="slope")

sjp.glm(model1, type="slope", show.ci = T)

sjp.glm(model1, type="eff", show.ci = T)

sjp.glm(model1, type="pred", show.ci = T, vars= "NewsType")