Before starting, you need to require package “plyr”, “dplyr”, “ggplot2”, “WWGbook”, “MASS”, “mlmRev”.
dta<- minn38
head(dta)
hs phs fol sex f
1 L C F1 M 87
2 L C F2 M 72
3 L C F3 M 52
4 L C F4 M 88
5 L C F5 M 32
6 L C F6 M 14
str(dta)
'data.frame': 168 obs. of 5 variables:
$ hs : Factor w/ 3 levels "L","M","U": 1 1 1 1 1 1 1 1 1 1 ...
$ phs: Factor w/ 4 levels "C","E","N","O": 1 1 1 1 1 1 1 3 3 3 ...
$ fol: Factor w/ 7 levels "F1","F2","F3",..: 1 2 3 4 5 6 7 1 2 3 ...
$ sex: Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
$ f : int 87 72 52 88 32 14 20 3 6 17 ...
help(minn38)
starting httpd help server ...
done
dta1<-filter(dta, sex == "F")
length(dta1$sex)
[1] 84
dta2<-filter(dta, sex == "F" & phs == "C")
length(dta2$sex)
[1] 21
dta<-Gcsemv
head(dta)
school student gender written course
1 20920 16 M 23 NA
2 20920 25 F NA 71.2
3 20920 27 F 39 76.8
4 20920 31 F 36 87.9
5 20920 42 M 16 44.4
6 20920 62 F 36 NA
str(dta)
'data.frame': 1905 obs. of 5 variables:
$ school : Factor w/ 73 levels "20920","22520",..: 1 1 1 1 1 1 1 1 1 2 ...
$ student: Factor w/ 649 levels "1","2","3","4",..: 16 25 27 31 42 62 101 113 146 1 ...
$ gender : Factor w/ 2 levels "F","M": 2 1 1 1 2 1 1 2 2 1 ...
$ written: num 23 NA 39 36 16 36 49 25 NA 48 ...
$ course : num NA 71.2 76.8 87.9 44.4 NA 89.8 17.5 32.4 84.2 ...
dta<-na.omit(dta)
corall<-cor(dta$written, dta$course)
schcor<-ddply(dta, .(school), summarize, corr=cor(course, written))
schcor<-schcor[-72,]
ggplot(schcor, aes(x = corr))+
geom_histogram(binwidth = 0.1, fill="skyblue") +
geom_vline(xintercept= mean(schcor$corr), linetype= "dotted", color="red")+
geom_text(aes(x=mean(schcor$corr), label="averaged correlations over schools",
y=20), colour="red", angle=90, vjust = -0.5, hjust = 1)+
geom_vline(xintercept= corall)+
geom_text(aes(x=corall, label="correlation computed over individuals",
y=20), angle=90, vjust = 1, hjust = 1)+
labs(x="Correlation coefficient")+
theme_bw()
dta<-autism
head(dta)
age vsae sicdegp childid
1 2 6 3 1
2 3 7 3 1
3 5 18 3 1
4 9 25 3 1
5 13 27 3 1
6 2 17 3 3
str(dta)
'data.frame': 612 obs. of 4 variables:
$ age : int 2 3 5 9 13 2 3 5 9 13 ...
$ vsae : int 6 7 18 25 27 17 18 12 18 24 ...
$ sicdegp: int 3 3 3 3 3 3 3 3 3 3 ...
$ childid: int 1 1 1 1 1 3 3 3 3 3 ...
ggplot(dta, aes(age, vsae, group=childid)) +
geom_point(size = 1.5)+
geom_line()+
facet_grid(.~sicdegp)+
labs(x="Age(years)", y="VSAE score")+
theme_bw()