Do the mixed model.

library(lme4)
library(zStat)

(load('/Users/alanzonderman/Desktop/tmp/DanThesisFinal.rdata'))
[1] "DanThesisFinal"
zQuick(DanThesisFinal)
Dimensions: 2806 44 

     HNDid                 time             Race         Sex        PovStat         Age.1              Age.3        
 Min.   :8031460601   Min.   :1.000000   White:1122   Women:1669   Above:1703   Min.   :30.10000   Min.   :32.9000  
 1st Qu.:8142708026   1st Qu.:1.000000   AfrAm:1684   Men  :1137   Below:1103   1st Qu.:41.50000   1st Qu.:46.1000  
 Median :8171783651   Median :3.000000                                          Median :48.70000   Median :53.4000  
 Mean   :8168396628   Mean   :2.008553                                          Mean   :48.51137   Mean   :53.0933  
 3rd Qu.:8194086251   3rd Qu.:3.000000                                          3rd Qu.:55.87500   3rd Qu.:60.4000  
 Max.   :8224521902   Max.   :3.000000                                          Max.   :66.20000   Max.   :70.8000  

   Attention          DigitSpanBck        DigitSpanFwd        FluencyWord       TrailsBtestSec          BMI          
 Min.   : 0.000000   Min.   : 0.000000   Min.   : 0.000000   Min.   : 5.00000   Min.   :  5.0000   Min.   :14.35524  
 1st Qu.: 5.000000   1st Qu.: 4.000000   1st Qu.: 6.000000   1st Qu.:15.00000   1st Qu.: 63.0000   1st Qu.:24.83074  
 Median : 7.000000   Median : 5.000000   Median : 7.000000   Median :19.00000   Median : 92.0000   Median :29.18744  
 Mean   : 6.474341   Mean   : 5.554882   Mean   : 7.224519   Mean   :19.01247   Mean   :161.6123   Mean   :30.34786  
 3rd Qu.: 8.000000   3rd Qu.: 7.000000   3rd Qu.: 9.000000   3rd Qu.:22.00000   3rd Qu.:154.0000   3rd Qu.:34.74891  
 Max.   :10.000000   Max.   :14.000000   Max.   :14.000000   Max.   :44.00000   Max.   :600.0000   Max.   :63.50000  
                                                                                                   NA's   :2         
 AlzheimersDisease Brain      CVstroke   DementiaAny Epilepsy   MultipleSclerosis ParkinsonDisease      PhyPerfDomHand
 No :2806          No :2806   No :2806   No :2806    No :2806   No :2806          No :2806         Right       :2012  
 Yes:   0          Yes:   0   Yes:   0   Yes:   0    Yes:   0   Yes:   0          Yes:   0         Left        : 262  
                                                                                                   Ambidextrous:  38  
                                                                                                   Ambidex     :  42  
                                                                                                   NA's        : 452  


  PhyPerfLeft       PhyPerfPain  PhyPerfRight      PhyPerfSafeStand    PhyPerfSecsTandem  PhyPerfSingle1    
 Min.   : 4.00000   No  :1920   Min.   : 5.00000   Min.   :0.0000000   Min.   : 1.00000   Min.   : 2.00000  
 1st Qu.:26.00000   Yes : 451   1st Qu.:26.00000   1st Qu.:1.0000000   1st Qu.:30.00000   1st Qu.:29.00000  
 Median :33.00000   NA's: 435   Median :33.00000   Median :1.0000000   Median :30.00000   Median :30.00000  
 Mean   :35.37554               Mean   :34.49314   Mean   :0.8575581   Mean   :29.42076   Mean   :26.70857  
 3rd Qu.:44.00000               3rd Qu.:41.00000   3rd Qu.:1.0000000   3rd Qu.:30.00000   3rd Qu.:30.00000  
 Max.   :95.00000               Max.   :83.00000   Max.   :1.0000000   Max.   :30.00000   Max.   :31.00000  
 NA's   :484                    NA's   :473        NA's   :398         NA's   :610        NA's   :905       
 PhyPerfSingle2     PhyPerfSingle3    PhyPerfStands10     PhyPerfSurgery       id                 Age           
 Min.   : 1.00000   Min.   : 1.0000   Min.   : 14.27000   No  :2366      Min.   :   1.0000   Min.   :-19.90000  
 1st Qu.:30.00000   1st Qu.:30.0000   1st Qu.: 28.34999   Yes :  11      1st Qu.: 409.5000   1st Qu.: -6.10000  
 Median :30.00000   Median :30.0000   Median : 33.00000   NA's: 429      Median : 850.5000   Median :  1.20000  
 Mean   :27.90412   Mean   :28.6926   Mean   : 33.98763                  Mean   : 846.4665   Mean   :  0.80866  
 3rd Qu.:30.00000   3rd Qu.:30.0000   3rd Qu.: 38.00000                  3rd Qu.:1287.7500   3rd Qu.:  8.20000  
 Max.   :31.00000   Max.   :31.0000   Max.   :109.88995                  Max.   :1678.0000   Max.   : 20.80000  
 NA's   :1106       NA's   :1212      NA's   :733                                                               
 PhyPerfSingleMN          ZAttention.V1         ZDigitSpanFwd.V1        ZDigitSpanBck.V1       ZFluencyWord.V1    
 Min.   : 4.333333   Min.   :-2.9675886678   Min.   :-2.8853094843   Min.   :-2.343980252   Min.   :-2.571692365  
 1st Qu.:30.000000   1st Qu.:-0.6821822243   1st Qu.:-0.4392545254   1st Qu.:-0.616229330   1st Qu.:-0.727302244  
 Median :30.000000   Median : 0.2319803530   Median :-0.0315786989   Median :-0.184291599   Median : 0.010453804  
 Mean   :28.608077   Mean   :-0.0082886779   Mean   : 0.0599522243   Mean   : 0.055383043   Mean   : 0.012754362  
 3rd Qu.:30.000000   3rd Qu.: 0.6890616417   3rd Qu.: 0.7837729540   3rd Qu.: 0.679583862   3rd Qu.: 0.563770841  
 Max.   :30.000000   Max.   : 1.6032242191   Max.   : 2.8221520865   Max.   : 3.703147976   Max.   : 4.621429106  
 NA's   :1213                                                                                                     
   ZTrailsBtestSec.V1            EF.V1             HNDwave          WRATtotal           ValidEF          DomHand    
 Min.   :-0.9206138871   Min.   :-6.974311844   Min.   :1.00000   Min.   :14.00000   Min.   :0   Ambidextrous:  80  
 1st Qu.:-0.5726305677   1st Qu.:-1.617107331   1st Qu.:1.00000   1st Qu.:38.00000   1st Qu.:0   Left        : 262  
 Median :-0.3986389079   Median :-0.001669087   Median :1.00000   Median :44.00000   Median :0   Right       :2012  
 Mean   : 0.0190146285   Mean   : 0.138815580   Mean   :1.04134   Mean   :42.58553   Mean   :0   NA's        : 452  
 3rd Qu.:-0.0266567389   3rd Qu.: 1.723758268   3rd Qu.:1.00000   3rd Qu.:49.00000   3rd Qu.:0                      
 Max.   : 2.6492149933   Max.   : 8.989384863   Max.   :3.00000   Max.   :57.00000   Max.   :0                      

mm5 = lmer(PhyPerfSingleMN~Age + Sex + EF + Race + BMI + PovStat + WRATtotal + (1|HNDid) + Age*Race + Age*EF ,data=DanThesisFinal,REML=F)
summary(mm5)
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: PhyPerfSingleMN ~ Age + Sex + EF + Race + BMI + PovStat + WRATtotal +      (1 | HNDid) + Age * Race + Age * EF
   Data: DanThesisFinal

     AIC      BIC   logLik deviance df.resid 
  8520.5   8584.9  -4248.2   8496.5     1579 

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-5.1364581 -0.0658631  0.1568661  0.3788438  2.6633921 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    (Intercept) 4.814149 2.194117
 Residual             7.989653 2.826597
Number of obs: 1591, groups:  HNDid, 1112

Fixed effects:
                  Estimate   Std. Error  t value
(Intercept)   30.532718539  0.840497823 36.32695
Age           -0.155171546  0.018435234 -8.41712
SexMen         0.136980103  0.200465461  0.68331
EF             0.156002314  0.045417791  3.43483
RaceAfrAm      0.762687838  0.215179342  3.54443
BMI           -0.121514157  0.014638391 -8.30106
PovStatBelow  -0.353121880  0.217219669 -1.62564
WRATtotal      0.021199001  0.015262331  1.38898
Age:RaceAfrAm  0.068311024  0.023155677  2.95008
Age:EF         0.012199973  0.004556671  2.67739

Correlation of Fixed Effects:
            (Intr) Age    SexMen EF     RcAfrA BMI    PvSttB WRATtt Ag:RAA
Age          0.052                                                        
SexMen      -0.194 -0.060                                                 
EF           0.223 -0.001 -0.002                                          
RaceAfrAm   -0.312 -0.108 -0.020  0.136                                   
BMI         -0.502  0.024  0.142  0.036 -0.030                            
PovStatBelw -0.275  0.049  0.049  0.076 -0.043  0.100                     
WRATtotal   -0.819 -0.048  0.017 -0.361  0.228 -0.028  0.172              
Age:RcAfrAm -0.064 -0.797  0.038  0.028  0.128  0.003  0.035  0.045       
Age:EF      -0.020 -0.309  0.050  0.228  0.058 -0.026 -0.041  0.031  0.264

Plot 3 levels of EF. Note new routine zHat. Also, note aggregate command, which will occur in the zHat routine in the next version.

plotData = zHat(DanThesisFinal, mm5, xAxis='Age', cutVars=list(EF=c(-2.306585887,0.138815580,2.584217047)))
# plotData = aggregate(Hat~Age+EF, data=plotData, FUN=mean)

lineTypes = c(1,2,3)

par(las=1, lwd=2)

plotData$AgeUn = plotData$Age + 50

with(plotData[plotData$EF==-2.306585887,], plot (AgeUn, Hat, lty=lineTypes[1], typ='l', ylim=c(22,32), ylab='Single Leg Stand', xlab='Age'))
with(plotData[plotData$EF== 0.138815580,], lines(AgeUn, Hat, lty=lineTypes[2]))
with(plotData[plotData$EF== 2.584217047,], lines(AgeUn, Hat, lty=lineTypes[3]))

legend(55, 32, c('-1SD EF','Mean EF','+1SD EF'), lty=lineTypes)

plot of chunk plt.1

For extra credit, plot sex and EF.

plotData = zHat(DanThesisFinal, mm5, xAxis='Age', factors='Sex', cutVars=list(EF=c(-2.306585887,0.138815580,2.584217047)))

par(las=1, lwd=2)

plotData$AgeUn = plotData$Age + 50

with(plotData[plotData$EF==-2.306585887 & plotData$Sex=='Women',], plot (AgeUn, Hat, lty=lineTypes[1], col='red', typ='l', ylim=c(22,32), ylab='Single Leg Stand', xlab='Age'))
with(plotData[plotData$EF== 0.138815580 & plotData$Sex=='Women',], lines(AgeUn, Hat, lty=lineTypes[2], col='red'))
with(plotData[plotData$EF== 2.584217047 & plotData$Sex=='Women',], lines(AgeUn, Hat, lty=lineTypes[3], col='red'))

with(plotData[plotData$EF==-2.306585887 & plotData$Sex=='Men',],   lines(AgeUn, Hat, lty=lineTypes[1], col='blue'))
with(plotData[plotData$EF== 0.138815580 & plotData$Sex=='Men',],   lines(AgeUn, Hat, lty=lineTypes[2], col='blue'))
with(plotData[plotData$EF== 2.584217047 & plotData$Sex=='Men',],   lines(AgeUn, Hat, lty=lineTypes[3], col='blue'))

legend(55, 32, c('-1SD EF','Mean EF','+1SD EF'), lty=lineTypes)
text(30, 24, 'Women in red; men in blue', pos=4)

plot of chunk plt.2