黃老師前面在LDS甚麼是多變量,舉了回歸和雙變數常態分配的例子:

以年齡和疾病發生機率為例: 沒受過統計訓練的人寫的線性多變量回歸模型:\(y = β_0 + β_{1}x_{i1} + β_{2}x_{i2} + ... + ε_i\)

受過統計訓練的人則會寫成非線性多變量回歸模型:\(y = β_0 + β_{1}x_{i1} + β_{2}x^{2}_{i2} + ... + ε_i\)

順便幫我們複習了常態分配的方程式: \(f(x) = \frac{1}{δ\sqrt{2π}}e^{-\frac{1}{2}(\frac{x-μ}{δ})}\)

然後說他最喜歡的數學是線性代數,但是說沒念過的人還是放棄好了… 但我個人認為,放棄之前可以先看看別的老師怎麼說:http://ocw.aca.ntu.edu.tw/ntu-ocw/ocw/cou/102S207

然後提到SEM(Structural Equation Modeling),說直接學SEM會有95%的機率會失敗,建議先學EFA(Exploratory Factor Analysis)然後CFA(Confirmatory Factor Analysis),之後學SEM才會成功。

PCA(Principal Components Analysis)也提到了,用來做影像處理,把一張圖轉換為一維向量後,再用特徵空間的方式找出人臉。

很多統計方法都是用距離來計算的。

R中的盒形圖上下的橫線代表最大值區間(Q3+1.5ΔQ)和最小值區間(Q1-1.5ΔQ)

ΔQ = Q3 - Q1 = 四分位間距(interquartile range)

!–上面雜七雜八寫了一些,沒寫到的就是我忘了,大家幫忙補充–!

以下是Lia分享的黃老師上課用到的R Code:

data(USArrests)
View(USArrests)
?USArrests#標準多變量資料範本
## starting httpd help server ...
##  done
dotchart(USArrests$Murder)#$為抽取資料中其中一項變數

dotchart(USArrests$Murder,labels = row.names.default(USArrests),cex = 0.5)#labels為增加表列的名稱,cex為字體大小

data2 <- USArrests[order(USArrests$Murder),c(1,3)]#小括號為參數,中括號為排序或整理資料,C(1,3)為取第一個及第三個變數,order = 重新排序資料
dotchart(data2$Murder,labels = row.names(data2),cex = 0.5,
         main = "Murder arrests by state, 1973",
         xlab = "Murder per 100,000 population",
         col=c("darkblue","dodgerblue"))#main=主標題 xlab=下標題 col= 彩色變數 c(x,y)為向量函數 "xxx"="字串" 

V1 <- 1:10
V2 <- rep(3,2)
v3 <- c(V1,V2)
colors()#叫出彩色指令庫
##   [1] "white"                "aliceblue"            "antiquewhite"        
##   [4] "antiquewhite1"        "antiquewhite2"        "antiquewhite3"       
##   [7] "antiquewhite4"        "aquamarine"           "aquamarine1"         
##  [10] "aquamarine2"          "aquamarine3"          "aquamarine4"         
##  [13] "azure"                "azure1"               "azure2"              
##  [16] "azure3"               "azure4"               "beige"               
##  [19] "bisque"               "bisque1"              "bisque2"             
##  [22] "bisque3"              "bisque4"              "black"               
##  [25] "blanchedalmond"       "blue"                 "blue1"               
##  [28] "blue2"                "blue3"                "blue4"               
##  [31] "blueviolet"           "brown"                "brown1"              
##  [34] "brown2"               "brown3"               "brown4"              
##  [37] "burlywood"            "burlywood1"           "burlywood2"          
##  [40] "burlywood3"           "burlywood4"           "cadetblue"           
##  [43] "cadetblue1"           "cadetblue2"           "cadetblue3"          
##  [46] "cadetblue4"           "chartreuse"           "chartreuse1"         
##  [49] "chartreuse2"          "chartreuse3"          "chartreuse4"         
##  [52] "chocolate"            "chocolate1"           "chocolate2"          
##  [55] "chocolate3"           "chocolate4"           "coral"               
##  [58] "coral1"               "coral2"               "coral3"              
##  [61] "coral4"               "cornflowerblue"       "cornsilk"            
##  [64] "cornsilk1"            "cornsilk2"            "cornsilk3"           
##  [67] "cornsilk4"            "cyan"                 "cyan1"               
##  [70] "cyan2"                "cyan3"                "cyan4"               
##  [73] "darkblue"             "darkcyan"             "darkgoldenrod"       
##  [76] "darkgoldenrod1"       "darkgoldenrod2"       "darkgoldenrod3"      
##  [79] "darkgoldenrod4"       "darkgray"             "darkgreen"           
##  [82] "darkgrey"             "darkkhaki"            "darkmagenta"         
##  [85] "darkolivegreen"       "darkolivegreen1"      "darkolivegreen2"     
##  [88] "darkolivegreen3"      "darkolivegreen4"      "darkorange"          
##  [91] "darkorange1"          "darkorange2"          "darkorange3"         
##  [94] "darkorange4"          "darkorchid"           "darkorchid1"         
##  [97] "darkorchid2"          "darkorchid3"          "darkorchid4"         
## [100] "darkred"              "darksalmon"           "darkseagreen"        
## [103] "darkseagreen1"        "darkseagreen2"        "darkseagreen3"       
## [106] "darkseagreen4"        "darkslateblue"        "darkslategray"       
## [109] "darkslategray1"       "darkslategray2"       "darkslategray3"      
## [112] "darkslategray4"       "darkslategrey"        "darkturquoise"       
## [115] "darkviolet"           "deeppink"             "deeppink1"           
## [118] "deeppink2"            "deeppink3"            "deeppink4"           
## [121] "deepskyblue"          "deepskyblue1"         "deepskyblue2"        
## [124] "deepskyblue3"         "deepskyblue4"         "dimgray"             
## [127] "dimgrey"              "dodgerblue"           "dodgerblue1"         
## [130] "dodgerblue2"          "dodgerblue3"          "dodgerblue4"         
## [133] "firebrick"            "firebrick1"           "firebrick2"          
## [136] "firebrick3"           "firebrick4"           "floralwhite"         
## [139] "forestgreen"          "gainsboro"            "ghostwhite"          
## [142] "gold"                 "gold1"                "gold2"               
## [145] "gold3"                "gold4"                "goldenrod"           
## [148] "goldenrod1"           "goldenrod2"           "goldenrod3"          
## [151] "goldenrod4"           "gray"                 "gray0"               
## [154] "gray1"                "gray2"                "gray3"               
## [157] "gray4"                "gray5"                "gray6"               
## [160] "gray7"                "gray8"                "gray9"               
## [163] "gray10"               "gray11"               "gray12"              
## [166] "gray13"               "gray14"               "gray15"              
## [169] "gray16"               "gray17"               "gray18"              
## [172] "gray19"               "gray20"               "gray21"              
## [175] "gray22"               "gray23"               "gray24"              
## [178] "gray25"               "gray26"               "gray27"              
## [181] "gray28"               "gray29"               "gray30"              
## [184] "gray31"               "gray32"               "gray33"              
## [187] "gray34"               "gray35"               "gray36"              
## [190] "gray37"               "gray38"               "gray39"              
## [193] "gray40"               "gray41"               "gray42"              
## [196] "gray43"               "gray44"               "gray45"              
## [199] "gray46"               "gray47"               "gray48"              
## [202] "gray49"               "gray50"               "gray51"              
## [205] "gray52"               "gray53"               "gray54"              
## [208] "gray55"               "gray56"               "gray57"              
## [211] "gray58"               "gray59"               "gray60"              
## [214] "gray61"               "gray62"               "gray63"              
## [217] "gray64"               "gray65"               "gray66"              
## [220] "gray67"               "gray68"               "gray69"              
## [223] "gray70"               "gray71"               "gray72"              
## [226] "gray73"               "gray74"               "gray75"              
## [229] "gray76"               "gray77"               "gray78"              
## [232] "gray79"               "gray80"               "gray81"              
## [235] "gray82"               "gray83"               "gray84"              
## [238] "gray85"               "gray86"               "gray87"              
## [241] "gray88"               "gray89"               "gray90"              
## [244] "gray91"               "gray92"               "gray93"              
## [247] "gray94"               "gray95"               "gray96"              
## [250] "gray97"               "gray98"               "gray99"              
## [253] "gray100"              "green"                "green1"              
## [256] "green2"               "green3"               "green4"              
## [259] "greenyellow"          "grey"                 "grey0"               
## [262] "grey1"                "grey2"                "grey3"               
## [265] "grey4"                "grey5"                "grey6"               
## [268] "grey7"                "grey8"                "grey9"               
## [271] "grey10"               "grey11"               "grey12"              
## [274] "grey13"               "grey14"               "grey15"              
## [277] "grey16"               "grey17"               "grey18"              
## [280] "grey19"               "grey20"               "grey21"              
## [283] "grey22"               "grey23"               "grey24"              
## [286] "grey25"               "grey26"               "grey27"              
## [289] "grey28"               "grey29"               "grey30"              
## [292] "grey31"               "grey32"               "grey33"              
## [295] "grey34"               "grey35"               "grey36"              
## [298] "grey37"               "grey38"               "grey39"              
## [301] "grey40"               "grey41"               "grey42"              
## [304] "grey43"               "grey44"               "grey45"              
## [307] "grey46"               "grey47"               "grey48"              
## [310] "grey49"               "grey50"               "grey51"              
## [313] "grey52"               "grey53"               "grey54"              
## [316] "grey55"               "grey56"               "grey57"              
## [319] "grey58"               "grey59"               "grey60"              
## [322] "grey61"               "grey62"               "grey63"              
## [325] "grey64"               "grey65"               "grey66"              
## [328] "grey67"               "grey68"               "grey69"              
## [331] "grey70"               "grey71"               "grey72"              
## [334] "grey73"               "grey74"               "grey75"              
## [337] "grey76"               "grey77"               "grey78"              
## [340] "grey79"               "grey80"               "grey81"              
## [343] "grey82"               "grey83"               "grey84"              
## [346] "grey85"               "grey86"               "grey87"              
## [349] "grey88"               "grey89"               "grey90"              
## [352] "grey91"               "grey92"               "grey93"              
## [355] "grey94"               "grey95"               "grey96"              
## [358] "grey97"               "grey98"               "grey99"              
## [361] "grey100"              "honeydew"             "honeydew1"           
## [364] "honeydew2"            "honeydew3"            "honeydew4"           
## [367] "hotpink"              "hotpink1"             "hotpink2"            
## [370] "hotpink3"             "hotpink4"             "indianred"           
## [373] "indianred1"           "indianred2"           "indianred3"          
## [376] "indianred4"           "ivory"                "ivory1"              
## [379] "ivory2"               "ivory3"               "ivory4"              
## [382] "khaki"                "khaki1"               "khaki2"              
## [385] "khaki3"               "khaki4"               "lavender"            
## [388] "lavenderblush"        "lavenderblush1"       "lavenderblush2"      
## [391] "lavenderblush3"       "lavenderblush4"       "lawngreen"           
## [394] "lemonchiffon"         "lemonchiffon1"        "lemonchiffon2"       
## [397] "lemonchiffon3"        "lemonchiffon4"        "lightblue"           
## [400] "lightblue1"           "lightblue2"           "lightblue3"          
## [403] "lightblue4"           "lightcoral"           "lightcyan"           
## [406] "lightcyan1"           "lightcyan2"           "lightcyan3"          
## [409] "lightcyan4"           "lightgoldenrod"       "lightgoldenrod1"     
## [412] "lightgoldenrod2"      "lightgoldenrod3"      "lightgoldenrod4"     
## [415] "lightgoldenrodyellow" "lightgray"            "lightgreen"          
## [418] "lightgrey"            "lightpink"            "lightpink1"          
## [421] "lightpink2"           "lightpink3"           "lightpink4"          
## [424] "lightsalmon"          "lightsalmon1"         "lightsalmon2"        
## [427] "lightsalmon3"         "lightsalmon4"         "lightseagreen"       
## [430] "lightskyblue"         "lightskyblue1"        "lightskyblue2"       
## [433] "lightskyblue3"        "lightskyblue4"        "lightslateblue"      
## [436] "lightslategray"       "lightslategrey"       "lightsteelblue"      
## [439] "lightsteelblue1"      "lightsteelblue2"      "lightsteelblue3"     
## [442] "lightsteelblue4"      "lightyellow"          "lightyellow1"        
## [445] "lightyellow2"         "lightyellow3"         "lightyellow4"        
## [448] "limegreen"            "linen"                "magenta"             
## [451] "magenta1"             "magenta2"             "magenta3"            
## [454] "magenta4"             "maroon"               "maroon1"             
## [457] "maroon2"              "maroon3"              "maroon4"             
## [460] "mediumaquamarine"     "mediumblue"           "mediumorchid"        
## [463] "mediumorchid1"        "mediumorchid2"        "mediumorchid3"       
## [466] "mediumorchid4"        "mediumpurple"         "mediumpurple1"       
## [469] "mediumpurple2"        "mediumpurple3"        "mediumpurple4"       
## [472] "mediumseagreen"       "mediumslateblue"      "mediumspringgreen"   
## [475] "mediumturquoise"      "mediumvioletred"      "midnightblue"        
## [478] "mintcream"            "mistyrose"            "mistyrose1"          
## [481] "mistyrose2"           "mistyrose3"           "mistyrose4"          
## [484] "moccasin"             "navajowhite"          "navajowhite1"        
## [487] "navajowhite2"         "navajowhite3"         "navajowhite4"        
## [490] "navy"                 "navyblue"             "oldlace"             
## [493] "olivedrab"            "olivedrab1"           "olivedrab2"          
## [496] "olivedrab3"           "olivedrab4"           "orange"              
## [499] "orange1"              "orange2"              "orange3"             
## [502] "orange4"              "orangered"            "orangered1"          
## [505] "orangered2"           "orangered3"           "orangered4"          
## [508] "orchid"               "orchid1"              "orchid2"             
## [511] "orchid3"              "orchid4"              "palegoldenrod"       
## [514] "palegreen"            "palegreen1"           "palegreen2"          
## [517] "palegreen3"           "palegreen4"           "paleturquoise"       
## [520] "paleturquoise1"       "paleturquoise2"       "paleturquoise3"      
## [523] "paleturquoise4"       "palevioletred"        "palevioletred1"      
## [526] "palevioletred2"       "palevioletred3"       "palevioletred4"      
## [529] "papayawhip"           "peachpuff"            "peachpuff1"          
## [532] "peachpuff2"           "peachpuff3"           "peachpuff4"          
## [535] "peru"                 "pink"                 "pink1"               
## [538] "pink2"                "pink3"                "pink4"               
## [541] "plum"                 "plum1"                "plum2"               
## [544] "plum3"                "plum4"                "powderblue"          
## [547] "purple"               "purple1"              "purple2"             
## [550] "purple3"              "purple4"              "red"                 
## [553] "red1"                 "red2"                 "red3"                
## [556] "red4"                 "rosybrown"            "rosybrown1"          
## [559] "rosybrown2"           "rosybrown3"           "rosybrown4"          
## [562] "royalblue"            "royalblue1"           "royalblue2"          
## [565] "royalblue3"           "royalblue4"           "saddlebrown"         
## [568] "salmon"               "salmon1"              "salmon2"             
## [571] "salmon3"              "salmon4"              "sandybrown"          
## [574] "seagreen"             "seagreen1"            "seagreen2"           
## [577] "seagreen3"            "seagreen4"            "seashell"            
## [580] "seashell1"            "seashell2"            "seashell3"           
## [583] "seashell4"            "sienna"               "sienna1"             
## [586] "sienna2"              "sienna3"              "sienna4"             
## [589] "skyblue"              "skyblue1"             "skyblue2"            
## [592] "skyblue3"             "skyblue4"             "slateblue"           
## [595] "slateblue1"           "slateblue2"           "slateblue3"          
## [598] "slateblue4"           "slategray"            "slategray1"          
## [601] "slategray2"           "slategray3"           "slategray4"          
## [604] "slategrey"            "snow"                 "snow1"               
## [607] "snow2"                "snow3"                "snow4"               
## [610] "springgreen"          "springgreen1"         "springgreen2"        
## [613] "springgreen3"         "springgreen4"         "steelblue"           
## [616] "steelblue1"           "steelblue2"           "steelblue3"          
## [619] "steelblue4"           "tan"                  "tan1"                
## [622] "tan2"                 "tan3"                 "tan4"                
## [625] "thistle"              "thistle1"             "thistle2"            
## [628] "thistle3"             "thistle4"             "tomato"              
## [631] "tomato1"              "tomato2"              "tomato3"             
## [634] "tomato4"              "turquoise"            "turquoise1"          
## [637] "turquoise2"           "turquoise3"           "turquoise4"          
## [640] "violet"               "violetred"            "violetred1"          
## [643] "violetred2"           "violetred3"           "violetred4"          
## [646] "wheat"                "wheat1"               "wheat2"              
## [649] "wheat3"               "wheat4"               "whitesmoke"          
## [652] "yellow"               "yellow1"              "yellow2"             
## [655] "yellow3"              "yellow4"              "yellowgreen"
name1 <- c("Handsome","Cute","Jone")
demo(colors)# show example of colors
## 
## 
##  demo(colors)
##  ---- ~~~~~~
## 
## > ### ----------- Show (almost) all named colors ---------------------
## > 
## > ## 1) with traditional 'graphics' package:
## > showCols1 <- function(bg = "gray", cex = 0.75, srt = 30) {
## +     m <- ceiling(sqrt(n <- length(cl <- colors())))
## +     length(cl) <- m*m; cm <- matrix(cl, m)
## +     ##
## +     require("graphics")
## +     op <- par(mar=rep(0,4), ann=FALSE, bg = bg); on.exit(par(op))
## +     plot(1:m,1:m, type="n", axes=FALSE)
## +     text(col(cm), rev(row(cm)), cm,  col = cl, cex=cex, srt=srt)
## + }
## 
## > showCols1()
## 
## > ## 2) with 'grid' package:
## > showCols2 <- function(bg = "grey", cex = 0.75, rot = 30) {
## +     m <- ceiling(sqrt(n <- length(cl <- colors())))
## +     length(cl) <- m*m; cm <- matrix(cl, m)
## +     ##
## +     require("grid")
## +     grid.newpage(); vp <- viewport(w = .92, h = .92)
## +     grid.rect(gp=gpar(fill=bg))
## +     grid.text(cm, x = col(cm)/m, y = rev(row(cm))/m, rot = rot,
## +               vp=vp, gp=gpar(cex = cex, col = cm))
## + }
## 
## > showCols2()
## Loading required package: grid

## 
## > showCols2(bg = "gray33")

## 
## > ###
## > 
## > ##' @title Comparing Colors
## > ##' @param col
## > ##' @param nrow
## > ##' @param ncol
## > ##' @param txt.col
## > ##' @return the grid layout, invisibly
## > ##' @author Marius Hofert, originally
## > plotCol <- function(col, nrow=1, ncol=ceiling(length(col) / nrow),
## +                     txt.col="black") {
## +     stopifnot(nrow >= 1, ncol >= 1)
## +     if(length(col) > nrow*ncol)
## +         warning("some colors will not be shown")
## +     require(grid)
## +     grid.newpage()
## +     gl <- grid.layout(nrow, ncol)
## +     pushViewport(viewport(layout=gl))
## +     ic <- 1
## +     for(i in 1:nrow) {
## +         for(j in 1:ncol) {
## +             pushViewport(viewport(layout.pos.row=i, layout.pos.col=j))
## +             grid.rect(gp= gpar(fill=col[ic]))
## +             grid.text(col[ic], gp=gpar(col=txt.col))
## +             upViewport()
## +             ic <- ic+1
## +         }
## +     }
## +     upViewport()
## +     invisible(gl)
## + }
## 
## > ## A Chocolate Bar of colors:
## > plotCol(c("#CC8C3C", paste0("chocolate", 2:4),
## +           paste0("darkorange", c("",1:2)), paste0("darkgoldenrod", 1:2),
## +           "orange", "orange1", "sandybrown", "tan1", "tan2"),
## +         nrow=2)

## 
## > ##' Find close R colors() to a given color {original by Marius Hofert)
## > ##' using Euclidean norm in (HSV / RGB / ...) color space
## > nearRcolor <- function(rgb, cSpace = c("hsv", "rgb255", "Luv", "Lab"),
## +                        dist = switch(cSpace, "hsv" = 0.10, "rgb255" = 30,
## +                        "Luv" = 15, "Lab" = 12))
## + {
## +     if(is.character(rgb)) rgb <- col2rgb(rgb)
## +     stopifnot(length(rgb <- as.vector(rgb)) == 3)
## +     Rcol <- col2rgb(.cc <- colors())
## +     uniqC <- !duplicated(t(Rcol)) # gray9 == grey9 (etc)
## +     Rcol <- Rcol[, uniqC] ; .cc <- .cc[uniqC]
## +     cSpace <- match.arg(cSpace)
## +     convRGB2 <- function(Rgb, to)
## +         t(convertColor(t(Rgb), from="sRGB", to=to, scale.in=255))
## +     ## the transformation,  rgb{0..255} --> cSpace :
## +     TransF <- switch(cSpace,
## +                      "rgb255" = identity,
## +                      "hsv" = rgb2hsv,
## +                      "Luv" = function(RGB) convRGB2(RGB, "Luv"),
## +                      "Lab" = function(RGB) convRGB2(RGB, "Lab"))
## +     d <- sqrt(colSums((TransF(Rcol) - as.vector(TransF(rgb)))^2))
## +     iS <- sort.list(d[near <- d <= dist])# sorted: closest first
## +     setNames(.cc[near][iS], format(d[near][iS], digits=3))
## + }
## 
## > nearRcolor(col2rgb("tan2"), "rgb")
##          0.0         21.1         25.8         29.5 
##       "tan2"       "tan1" "sandybrown"    "sienna1" 
## 
## > nearRcolor(col2rgb("tan2"), "hsv")
##       0.0000       0.0410       0.0618       0.0638       0.0667 
##       "tan2"    "sienna2"     "coral2"    "tomato2"       "tan1" 
##       0.0766       0.0778       0.0900       0.0912       0.0918 
##      "coral"    "sienna1" "sandybrown"     "coral1"     "tomato" 
## 
## > nearRcolor(col2rgb("tan2"), "Luv")
##         0.00         7.42         7.48        12.41        13.69 
##       "tan2"       "tan1" "sandybrown"    "orange3"    "orange2" 
## 
## > nearRcolor(col2rgb("tan2"), "Lab")
##         0.00         5.56         8.08        11.31 
##       "tan2"       "tan1" "sandybrown"       "peru" 
## 
## > nearRcolor("#334455")
##          0.0867 
## "darkslategray" 
## 
## > ## Now, consider choosing a color by looking in the
## > ## neighborhood of one you know :
## > 
## > plotCol(nearRcolor("deepskyblue", "rgb", dist=50))

## 
## > plotCol(nearRcolor("deepskyblue", dist=.1))

## 
## > plotCol(nearRcolor("tomato", "rgb", dist= 50), nrow=3)

## 
## > plotCol(nearRcolor("tomato", "hsv", dist=.12), nrow=3)

## 
## > plotCol(nearRcolor("tomato", "Luv", dist= 25), nrow=3)

## 
## > plotCol(nearRcolor("tomato", "Lab", dist= 18), nrow=3)

dotchart(data2$Murder,labels = row.names(data2),cex = 0.5,
         main = "Murder arrests by state, 1973",
         xlab = "Murder per 100,000 population",
         col=c("darkblue","dodgerblue"),pch=13)

data(mtcars)
View(mtcars)
data3 <- mtcars[order(mtcars$mpg),c(1,3)]
dotchart(data3$mpg,labels = row.names(mtcars),cex = 0.5,main = "X",xlab = "Y",col=c("green","red"),pch=13)

V4 <- c(1,2,3,4)
V5 <- c(3,5)
V4+V5
## [1] 4 7 6 9
##Box Plot##
data("MathAchieve",package="nlme")
View(MathAchieve)
par(mfrow=c(1,2))#一個視窗畫一個一列兩行的圖
boxplot(MathAchieve$MathAch,col = "red",main="Math Achievement Scores",ylab="Scores")
boxplot(MathAchieve$SES,col = "blue",main="secio-economic status",ylab="Scores")

library(nlme)

boxplot(MathAchieve$MathAch,col = "red")
boxplot(MathAchieve$SES,col = "blue")

par(mfrow=c(1,1))#一個視窗畫一個一列兩行的圖

以下是YuLien分享的簡單的常態分配隨機取點的Code:

n1 <- rnorm(1000,0,1) #從標準常態分配中隨機取1000個點
n1
##    [1]  1.539123e-01  1.111998e+00  2.313382e-01  4.170520e-01
##    [5] -1.809983e+00 -8.007749e-01  2.395713e-01 -7.327806e-01
##    [9] -1.803306e-01  9.680131e-01  3.251851e-01  2.837830e-02
##   [13] -2.341106e-01 -1.084194e+00 -2.942679e-01  7.633681e-01
##   [17]  3.422082e-01 -8.567561e-01  2.262577e+00  2.935191e+00
##   [21] -1.752134e-01 -1.777010e+00  4.395186e-02 -7.086983e-02
##   [25] -7.859787e-01  1.128198e+00  2.919786e-01  9.588936e-01
##   [29] -6.618248e-01 -3.258219e-01  1.527460e+00 -4.584533e-02
##   [33]  9.570674e-01 -5.657843e-01  2.651358e-01 -2.414969e-01
##   [37]  3.748234e-01  1.565428e+00  9.146691e-01  8.655394e-01
##   [41]  1.401906e+00  3.438233e-01 -5.694540e-01  6.488149e-01
##   [45] -1.565991e+00  2.550725e-01 -3.044795e-01  5.691777e-01
##   [49]  1.214950e+00  2.148283e+00 -3.760253e-01  1.293406e+00
##   [53] -1.171351e+00 -5.848580e-01 -7.788385e-01  8.157812e-01
##   [57] -5.319831e-01 -1.979726e-02 -1.155866e+00 -3.238620e-01
##   [61]  1.079343e+00  9.352136e-01 -1.465121e+00  5.216918e-01
##   [65]  2.214862e-01 -1.029923e+00  1.102108e+00 -6.080228e-01
##   [69] -2.886582e-01  1.750306e+00  5.476367e-01 -1.393368e-01
##   [73]  2.062814e-01 -4.721294e-01  4.091768e-01  1.126042e+00
##   [77]  8.088947e-01 -9.898829e-01  3.309085e-01  9.680690e-01
##   [81] -1.017824e+00  2.660339e-01  3.552154e-01 -1.636531e-01
##   [85] -1.986268e-01 -1.837618e+00  1.986225e+00 -5.461366e-01
##   [89] -2.515950e-01 -9.163893e-01 -5.044316e-01 -1.033618e+00
##   [93]  3.031989e-01 -1.866087e+00  1.722252e+00  3.280471e-01
##   [97]  1.588786e+00 -8.241103e-01  1.543194e+00  6.422330e-01
##  [101] -4.802583e-01 -7.695930e-02  2.031273e+00 -2.933530e-01
##  [105] -5.728836e-01 -1.806912e+00 -1.104015e+00  1.014540e+00
##  [109] -5.654166e-02 -2.829149e-01  2.130956e-01  3.375557e-01
##  [113]  1.646287e-01  2.065140e-02  9.275517e-01 -7.039200e-01
##  [117]  1.539181e+00  5.710610e-01 -9.743513e-01  1.813279e+00
##  [121]  2.994932e-01 -2.590925e+00 -1.149609e+00 -6.390442e-01
##  [125] -6.104864e-01  2.529489e-02 -1.132329e+00 -2.531883e+00
##  [129]  1.629701e+00 -5.095368e-01  1.755404e+00  2.578501e-02
##  [133]  6.264166e-01 -6.113754e-01 -1.476378e+00 -4.725413e-01
##  [137] -6.750510e-01 -7.437122e-02  5.112644e-01  8.586736e-01
##  [141] -5.547213e-02  3.315375e-02  3.518976e-01  5.108769e-01
##  [145] -3.689947e-01  1.116757e+00  4.359950e-01  1.902915e+00
##  [149] -8.916054e-01 -2.257618e-01 -6.746209e-01 -7.535520e-01
##  [153]  1.037429e+00  5.863542e-01  1.103480e+00  5.579115e-02
##  [157]  2.227252e+00  1.097697e+00  1.843284e-02 -1.235150e+00
##  [161]  1.687275e+00 -8.724267e-01  2.099299e-01 -8.375932e-01
##  [165]  3.642258e-01 -1.458193e+00 -1.055470e+00 -2.553862e+00
##  [169] -1.864291e-02 -2.277929e+00  1.697990e+00  7.025516e-02
##  [173] -2.850767e-01  1.843729e+00  3.808892e-01 -5.699153e-01
##  [177]  1.905383e+00  3.946355e-01 -3.802663e-01  5.754282e-01
##  [181] -6.751072e-01  9.169487e-02 -8.805471e-01 -7.650840e-01
##  [185] -2.096107e+00  6.881515e-01  7.317776e-01 -4.073976e-01
##  [189] -4.368877e-01 -1.298823e-01  1.434476e+00 -4.489754e-01
##  [193]  6.405105e-01 -1.125632e-01  5.204474e-01  1.177253e+00
##  [197] -1.122313e+00  9.326376e-01  1.920765e+00  1.735486e+00
##  [201]  1.667038e+00 -5.070555e-02 -1.493494e-01  2.051852e-01
##  [205]  1.008992e-01 -3.325261e-01 -5.135804e-01  1.526548e+00
##  [209]  4.436664e-03  3.927130e-01 -7.375377e-01  9.269076e-01
##  [213]  3.848826e-02 -1.439535e-01  7.487277e-01  9.185820e-01
##  [217]  2.600365e-01 -8.903053e-02 -1.194690e+00  5.025926e-01
##  [221]  4.821733e-01  8.832208e-01  2.691907e-01 -1.530660e+00
##  [225] -7.327098e-01  8.052622e-01  1.546527e+00 -8.152020e-02
##  [229]  7.330390e-02  1.074029e+00 -1.909714e-01  1.026543e+00
##  [233]  2.729816e-01  1.374425e+00  9.544608e-01 -6.385171e-02
##  [237] -4.437383e-01 -1.497485e-01 -1.444921e+00  1.443894e+00
##  [241]  2.500368e-01 -2.175619e+00 -3.393749e-01 -7.351067e-01
##  [245]  1.770089e-01  2.891007e-01 -9.512881e-01  3.584046e-01
##  [249] -4.880203e-01  8.485963e-01 -8.352882e-01  2.693204e+00
##  [253]  1.492378e-01  9.558845e-02 -4.994135e-01  3.793130e-02
##  [257]  1.722840e+00  8.327222e-01  2.772465e-01 -1.176525e+00
##  [261]  1.001572e+00  1.498121e+00  1.184642e-01  6.290745e-01
##  [265] -1.462698e+00  1.655478e+00  2.304894e+00  1.076500e+00
##  [269] -1.896858e+00 -2.042874e-01  6.559374e-01  2.438465e+00
##  [273]  1.007196e+00  9.065797e-01 -5.256108e-01  2.510837e-01
##  [277]  5.604225e-02  3.043629e-01 -1.179781e+00 -3.131878e-01
##  [281] -1.719428e+00 -1.551364e-01  2.593561e-01 -4.470455e-01
##  [285] -7.584745e-01  9.573721e-01 -1.600214e-01 -1.616269e+00
##  [289] -9.440260e-02  1.819800e+00 -9.281368e-01 -1.382926e+00
##  [293] -1.641214e+00  8.603717e-01 -2.354126e-02 -5.028225e-01
##  [297] -1.458967e+00  3.144247e-01  1.262048e+00  2.452521e-01
##  [301]  1.316227e+00 -1.048436e+00 -1.846419e+00 -8.925099e-01
##  [305] -9.827377e-01  1.348855e-01  1.484166e+00 -1.926110e-01
##  [309]  7.535119e-02  2.669739e-01  1.206507e+00 -5.329390e-01
##  [313]  4.897114e-01 -6.106237e-02 -4.258260e-01 -5.473666e-01
##  [317]  3.399151e-01  1.402106e+00  1.234383e-01  1.571495e+00
##  [321] -5.760557e-01  1.584460e-03 -9.600731e-01  1.624184e-01
##  [325]  5.091670e-01 -1.550160e+00  7.344062e-01 -6.347621e-01
##  [329] -6.029364e-02  5.053494e-01  5.089791e-01 -5.942060e-01
##  [333]  2.465613e+00  2.179900e-01  1.251945e+00 -9.397731e-01
##  [337]  4.207362e-01  9.290286e-01 -4.397362e-01  1.239661e-01
##  [341]  1.593953e-01 -1.119240e+00  8.525109e-01  5.347096e-01
##  [345]  1.797821e+00  1.811160e-01 -1.601210e+00 -5.406815e-01
##  [349]  5.480063e-01  1.664064e-01 -8.310323e-02  5.884152e-02
##  [353] -1.127933e+00  6.742900e-01  1.635035e+00 -7.350854e-01
##  [357] -4.741045e-01  3.359328e-01 -6.203464e-01  1.874158e+00
##  [361] -1.098179e+00  2.079177e+00  8.935325e-01 -1.880821e-03
##  [365]  2.280061e-01  6.792598e-01 -8.151278e-01  8.132111e-01
##  [369] -4.609006e-01 -1.390982e+00  8.930657e-01 -4.491529e-02
##  [373]  2.601861e-01  7.918064e-01  2.117447e+00  7.515106e-02
##  [377] -1.144466e+00  9.620133e-01  7.812221e-01  9.171236e-01
##  [381]  4.005511e-01 -2.333277e-01 -2.663230e-01 -1.256028e+00
##  [385] -1.181843e+00  1.096267e-02  2.258602e-01 -4.524781e-01
##  [389] -3.574582e-02  4.540249e-01 -5.647632e-01 -1.735213e+00
##  [393]  8.786556e-01 -3.842387e-02 -9.248367e-01  7.218601e-01
##  [397]  9.252130e-02 -1.163557e+00 -1.127015e+00  1.144931e-01
##  [401] -9.795363e-01  1.705888e+00  5.512063e-01 -8.808366e-01
##  [405] -1.508906e+00 -1.309961e+00 -2.289886e-01 -9.480685e-02
##  [409] -2.932455e-01 -1.851808e+00  5.596356e-06  2.089941e+00
##  [413]  5.007767e-02 -1.404256e-02  1.011793e+00  1.391057e-01
##  [417]  5.197019e-01 -9.317173e-01  5.544281e-01 -9.373820e-02
##  [421]  2.063858e-01 -2.044022e-01 -4.987478e-01  5.947833e-01
##  [425]  1.286142e+00  6.188335e-01  7.107065e-01 -7.103263e-01
##  [429]  1.586796e+00 -3.572347e-01  6.662730e-01  1.823280e+00
##  [433]  1.594556e-01 -5.087700e-01 -1.202116e-01 -3.647788e-01
##  [437] -2.264271e+00  1.174463e+00 -8.580209e-01  3.332050e-01
##  [441] -3.648647e-01  6.654102e-01  5.671176e-01 -1.948461e+00
##  [445]  8.322039e-01 -7.889433e-01  7.418770e-01  4.299521e-02
##  [449]  1.271659e+00 -1.922382e+00  9.922539e-01 -1.093865e+00
##  [453] -3.096923e-01  8.731361e-02  1.798389e-01  1.835886e+00
##  [457] -9.311811e-01  6.769979e-01 -2.618644e-01  4.784595e-01
##  [461]  1.771211e-01  1.447970e+00 -5.432306e-01 -1.539785e+00
##  [465]  2.546657e-01  4.634321e-01 -1.109325e+00 -2.191261e-01
##  [469]  1.209571e+00 -7.924640e-01 -4.025223e-01  1.006454e+00
##  [473] -2.238465e-01  4.241431e-01 -1.570750e+00 -1.097593e+00
##  [477]  2.240634e+00  5.002185e-01  5.586675e-01  9.779512e-01
##  [481]  2.449637e-01 -1.246307e-01 -7.282859e-01  1.028726e+00
##  [485]  5.098369e-01 -2.538246e-01  1.575436e-01  7.402133e-02
##  [489]  1.777575e+00  1.696950e+00  6.846289e-02  6.911213e-01
##  [493]  8.411605e-02  5.022666e-02  5.017399e-01 -8.001612e-02
##  [497] -4.983521e-02 -2.704647e-01  1.157168e+00  2.928245e-01
##  [501] -1.173983e+00 -1.407039e+00  1.094345e-01 -1.080459e+00
##  [505]  2.595877e-01  1.362751e+00 -2.501720e-01  2.234458e-01
##  [509]  6.752163e-01  7.403804e-01 -3.478861e-01  2.208879e-01
##  [513] -1.786618e-02 -3.442812e-01 -1.806592e-01 -2.820139e-01
##  [517] -4.990641e-01  1.587636e+00  4.349865e-01  1.345199e+00
##  [521] -1.893770e-01 -1.670014e+00  1.464600e-02 -7.126146e-01
##  [525] -7.032827e-01  5.430892e-01 -6.054057e-01 -2.537447e-01
##  [529] -4.876256e-01 -1.264713e+00 -4.891869e-01 -1.394489e+00
##  [533]  6.991587e-01 -7.396353e-02 -5.571421e-01 -2.521164e+00
##  [537]  2.112115e+00  2.700223e-01 -4.999432e-01  7.851473e-01
##  [541] -4.431126e-01 -9.587916e-01  1.548021e+00 -1.153395e+00
##  [545] -1.162288e-01 -1.279464e-01  9.818250e-01 -8.877406e-01
##  [549]  6.919640e-01 -7.153760e-01 -5.997800e-01  4.957260e-02
##  [553]  1.512771e-01 -2.833628e-01 -3.164939e-01 -1.604553e+00
##  [557] -2.327754e-02  8.976210e-01  1.579876e+00 -1.525210e+00
##  [561] -2.732724e-01  6.194822e-02 -2.330804e-01  5.591313e-01
##  [565]  1.628522e+00 -3.107453e-01  1.424729e+00 -9.556990e-01
##  [569]  2.671682e+00  4.857247e-01 -1.136812e+00  5.845687e-01
##  [573]  2.912216e+00 -7.318538e-01 -1.775614e+00  8.113045e-01
##  [577]  1.188868e-01 -7.202253e-01 -1.596234e-01 -3.205412e-01
##  [581] -1.508979e+00  5.284698e-01  8.773712e-01  2.306885e-01
##  [585]  2.071061e+00  2.200400e+00 -1.532191e+00  1.342393e-01
##  [589]  7.642520e-02 -1.858482e+00 -1.058236e+00 -1.737826e+00
##  [593]  1.886073e+00  1.295315e+00  1.241789e+00 -1.489098e+00
##  [597]  2.519338e-01  3.223380e-01  2.689115e-01  2.901010e-01
##  [601] -1.120480e-01  2.088471e+00 -7.273539e-01  6.429305e-01
##  [605]  6.404030e-02  1.314801e+00 -1.502712e-01 -6.422100e-01
##  [609] -1.731207e+00  5.042453e-01 -1.802695e-01 -2.367691e+00
##  [613]  1.142632e+00 -7.925873e-01 -9.525673e-01 -2.137059e+00
##  [617] -4.246546e-01 -3.764766e-01 -5.175721e-01 -1.754673e-01
##  [621] -2.307118e-01  7.084790e-01 -1.871459e-01  1.244915e+00
##  [625] -6.396312e-01  1.333444e+00  7.960923e-01 -2.424560e-01
##  [629] -9.136538e-02 -2.817474e+00 -1.297657e+00 -7.598231e-01
##  [633]  8.889932e-02  1.188588e+00 -1.322320e+00 -1.647937e-01
##  [637] -6.057185e-01 -6.975671e-01  8.691563e-01 -2.147924e-01
##  [641] -1.720785e+00 -8.173661e-01  2.632794e-01 -2.642529e-01
##  [645]  1.362451e+00 -1.680832e+00 -2.260392e-01  6.733783e-01
##  [649]  1.634582e-01  1.184765e+00  1.238002e+00 -1.625959e+00
##  [653]  2.146950e+00 -1.369414e+00  5.355861e-01  2.729754e-01
##  [657]  5.937415e-01  8.648389e-02  2.031912e-01 -2.784608e-01
##  [661]  1.113248e+00 -2.201260e-01  6.566426e-01  8.642663e-01
##  [665]  1.860195e+00 -3.937546e-02  5.277626e-01  7.713349e-01
##  [669] -4.091798e-01 -2.784175e-01 -5.508211e-01  9.977731e-01
##  [673] -1.852643e-01 -1.655952e+00 -4.728656e-01 -5.147818e-01
##  [677]  6.262106e-01  1.667990e-01  1.954032e+00  3.806645e-01
##  [681] -5.511060e-01  1.485946e-01 -1.332705e+00 -4.996345e-01
##  [685]  2.827850e-01 -3.306439e-02 -1.990206e+00  7.413732e-02
##  [689]  5.203844e-01  1.186523e+00  9.886011e-01 -6.883002e-01
##  [693] -1.095268e+00 -7.793460e-01  1.068109e+00 -3.090142e-01
##  [697]  1.723590e-01 -1.534678e-01  3.119327e-01 -1.132824e+00
##  [701] -6.253733e-01  5.876037e-01 -1.478716e+00 -1.471885e+00
##  [705]  6.107924e-01 -9.110657e-01 -4.535410e-01 -5.086643e-01
##  [709] -1.516763e+00 -7.968262e-01  1.514776e+00 -1.399434e+00
##  [713]  7.603271e-01  1.457992e+00  1.095568e+00  3.573263e-03
##  [717] -8.304702e-01  4.947640e-01 -9.396056e-01 -2.079131e-01
##  [721] -3.835348e-01 -1.414606e+00  2.288501e-01 -2.669374e+00
##  [725] -7.141212e-01  4.905095e-01  5.191050e-01  1.001167e+00
##  [729] -1.383351e-01  6.048060e-01  4.032323e-02  1.152710e+00
##  [733]  1.794755e+00 -4.644539e-01  4.601365e-01  2.799019e-01
##  [737]  2.258824e-01 -1.636724e+00 -1.142866e-01 -1.378561e+00
##  [741]  7.941793e-01 -7.277720e-01 -3.469572e-02 -4.907120e-02
##  [745]  1.317081e+00 -9.955029e-01 -2.751887e-01 -3.520818e-01
##  [749]  9.308301e-01  1.164930e+00 -1.951224e+00  1.064213e+00
##  [753]  3.911812e-01 -1.791874e+00 -1.102699e+00 -1.416747e+00
##  [757]  8.350873e-01 -5.237235e-01  1.517998e+00  9.299236e-01
##  [761] -1.166420e+00  2.438315e+00 -1.316254e-01 -1.066033e+00
##  [765]  1.073295e-01  2.144509e+00  2.790002e+00 -5.710262e-01
##  [769] -7.411949e-01  5.063559e-01 -2.499660e-01  5.258738e-01
##  [773]  7.313331e-01  8.456467e-01  2.331478e-01  1.426300e+00
##  [777]  1.100335e+00 -1.454935e-01 -4.059422e-01 -8.579608e-01
##  [781]  1.871921e+00  3.128322e-01  2.389799e-01 -1.709268e+00
##  [785]  2.786199e-01  2.183948e-01 -1.181705e-01 -4.939789e-01
##  [789]  5.727909e-01  3.500345e-01  2.202151e+00 -6.733718e-01
##  [793]  1.912994e+00  9.942654e-01  6.930482e-02 -7.072527e-01
##  [797]  1.477618e+00  1.728964e+00  1.802539e-01  7.872456e-01
##  [801] -3.238205e-01 -8.879992e-01  5.188665e-01  5.189872e-01
##  [805] -1.006545e+00 -9.113449e-01  1.043152e-01  5.467160e-01
##  [809] -4.882417e-01  1.072515e+00  1.895505e-01 -1.888618e-01
##  [813] -3.572132e-01  5.661453e-01  8.515777e-01  3.231975e-01
##  [817] -8.841505e-01  8.971051e-01  9.967052e-01 -1.976281e+00
##  [821]  1.542899e+00 -2.411513e+00 -5.564187e-01 -8.380053e-01
##  [825] -3.420956e-01  3.787139e-01  3.251104e-01  1.093408e+00
##  [829] -1.292192e+00 -1.154907e+00 -1.987644e-01 -1.325463e-01
##  [833] -1.284182e+00  1.672910e+00 -1.123415e-01 -7.615004e-01
##  [837]  1.302582e+00 -1.447623e+00 -1.746402e+00 -1.752726e+00
##  [841] -5.546305e-01  2.202872e+00 -3.743067e-01 -3.515524e-02
##  [845] -5.491512e-01  5.513624e-01 -2.703568e-01  6.498377e-01
##  [849]  8.289361e-01  3.087670e-01  1.365433e+00  3.197749e-01
##  [853] -7.212832e-02 -5.855587e-01  5.052263e-01  1.081109e+00
##  [857] -1.723189e+00  9.392488e-03 -3.003167e-01 -4.328780e-01
##  [861]  1.307833e+00 -4.343172e-01  3.162700e-01  2.118406e+00
##  [865] -7.102587e-01  5.542593e-01 -2.578211e-01  9.505513e-01
##  [869]  4.426431e-01 -2.767944e-01  1.817403e+00  5.320060e-01
##  [873] -6.836070e-01 -1.236702e+00  5.624683e-01  8.858404e-01
##  [877] -8.490337e-01 -3.420275e-01  9.915708e-01 -7.296866e-01
##  [881]  3.296589e-01 -1.027047e+00 -1.531748e+00 -9.051196e-01
##  [885] -4.520458e-02  9.367131e-01 -3.211098e-01  2.896258e-01
##  [889] -1.765617e+00  7.182761e-01 -1.422344e+00 -6.267121e-01
##  [893] -1.016365e+00  8.406876e-01  1.381836e+00 -4.797902e-01
##  [897]  1.398453e-01 -4.423427e-01 -4.400663e-01 -1.683973e+00
##  [901] -1.035644e+00 -6.283251e-01  1.682920e+00 -1.114070e+00
##  [905] -1.386926e+00  2.304719e-01 -7.417627e-01 -5.527721e-01
##  [909] -6.258051e-01  4.103489e-02 -3.209386e-01 -2.228039e+00
##  [913]  6.294171e-01  1.227646e+00 -1.554447e-01  1.561200e+00
##  [917] -4.006508e-01 -3.822833e-01 -4.644311e-01  1.136524e+00
##  [921]  4.501260e-01 -1.996381e+00 -1.126025e-02  9.595071e-01
##  [925]  2.376206e-01 -8.405509e-01 -1.442824e+00  4.606851e-01
##  [929]  1.545133e-01 -2.174768e+00 -7.868751e-01  1.052711e+00
##  [933] -6.182762e-01 -1.468428e+00 -9.133345e-01  5.200543e-01
##  [937] -1.606602e+00  3.859740e-01 -1.250452e+00  3.612210e-01
##  [941]  1.678808e+00  1.081980e-01  9.262983e-01  2.773787e-01
##  [945]  4.193827e-02 -1.429381e+00  1.227116e+00 -9.392877e-01
##  [949]  3.634149e-01 -7.518713e-01  1.275339e+00 -6.175160e-01
##  [953]  3.671827e-02 -1.061427e+00 -2.190800e-01 -2.090433e-01
##  [957] -1.691758e+00 -1.468891e+00 -1.729659e+00 -3.432666e-01
##  [961]  1.367694e+00 -5.025048e-01  1.150992e-01  1.217724e-01
##  [965] -1.414196e+00 -6.014491e-01 -1.605153e+00 -2.920556e-01
##  [969] -9.840739e-01  7.943245e-01 -3.265819e-01  2.112809e+00
##  [973] -1.007785e+00 -2.852091e-01 -3.276157e-01 -8.517682e-02
##  [977]  1.917352e-01  3.222842e-01  2.437535e-01 -9.854208e-01
##  [981]  6.759349e-01 -1.732894e+00  7.528873e-01  1.318630e+00
##  [985] -2.522047e+00  6.890013e-01 -9.276314e-01  2.566581e-01
##  [989]  7.030819e-01  1.834903e-01  1.135429e+00 -4.790528e-01
##  [993]  5.240944e-02  1.518640e-01  3.051210e-01  1.040201e+00
##  [997]  3.617890e-02 -8.097128e-01 -1.659831e+00  9.997208e-01
boxplot(n1,col="blue") #畫出這1000個點的盒型圖

n2 <- rnorm(1000,10,2) #從平均數10,標準差2的常態分配中隨機取1000個點
n2
##    [1] 12.503052 10.716534  9.545057  8.525313 12.012465 11.448333
##    [7]  8.819914  9.087817 10.703583 11.122346 10.835099 10.507674
##   [13] 10.874848 11.111168  7.364150  9.082381  9.563788 12.654573
##   [19]  7.227902  9.962606 10.995101  8.982487 11.200596  8.634886
##   [25]  9.721437 10.492097 12.517171 10.797675  7.684423 13.471051
##   [31]  8.209623  6.681106 10.995387 12.269428 10.204647  8.505906
##   [37] 14.175878  8.686266 10.322895  6.507746  6.415918  8.994723
##   [43]  9.153579 10.722280  8.415600  9.871850 11.268131  8.853520
##   [49]  6.217102 10.747363  9.503064 10.386618 11.045030 12.227654
##   [55]  6.172885  7.022145  7.427765  9.244364  7.419168 10.099120
##   [61]  6.489441 12.553855 10.040121  9.832236  8.743970 10.031160
##   [67] 10.913451  8.207492  8.882830  5.199575 11.735405 11.962563
##   [73] 10.338390  8.451566  9.848477 10.063998  9.956069  6.219835
##   [79] 11.932422 11.304792  8.717339  5.121950  9.920010 11.064053
##   [85] 12.887785  8.846895 13.145648 13.294067  8.733050  6.994921
##   [91]  8.408516  6.570890  9.478247  9.143945  8.749615  9.759621
##   [97]  9.463018  9.310115 10.793395  7.964112 15.095053  7.066650
##  [103] 11.237510 13.764491  7.108991  9.663017 10.057214  9.968000
##  [109] 10.432158  7.088311 12.623898  9.450180 10.093562 12.898751
##  [115]  7.895413  6.246086  8.932498 10.808937 10.101531  9.381088
##  [121] 12.217563  8.790932  9.648245 11.213661  9.473273  8.362113
##  [127]  9.777069 11.214938  9.642356 14.095502 11.246665  8.305257
##  [133]  9.138809 12.421707  9.497526 11.542632  9.204074  8.552753
##  [139]  7.776508 11.331108  9.135733  8.813759 12.298388  6.144770
##  [145] 10.996907  6.784431 10.640095 12.661857  9.417248 11.527951
##  [151]  8.075102  9.594112 11.000373  9.443557 11.634566 10.849470
##  [157]  6.597283  8.891286  9.275952  6.850264  9.476001 10.506468
##  [163]  9.269477  2.366735  8.780582  9.226120 10.950579  9.950099
##  [169]  9.085928  9.414284  7.389247 10.760720 12.699421  6.611817
##  [175]  9.920782  8.432389 11.923767 15.919722  8.779769 14.958868
##  [181] 11.790015  9.253494  7.602842 11.854873  7.687617 12.099074
##  [187] 10.896919 11.361763 10.103179 14.992523  6.584738 10.172735
##  [193]  9.708576  9.110260 11.868001  9.143820  5.009267 10.648537
##  [199]  8.074497 10.226700  5.776703  7.969324  9.914282 11.679465
##  [205] 11.752539 11.718298  7.079498  9.520850  6.724280 11.200190
##  [211] 14.017541 11.657720  7.829387  7.868227 11.958827 10.051176
##  [217] 13.940727  5.552692 13.690136  8.400118 11.508927  7.791084
##  [223] 11.085182  6.050852 12.045365 13.425970 10.264170 12.960058
##  [229]  8.621780  3.167258  8.290105  6.217900 10.924562  3.804054
##  [235]  8.514094  9.479599 10.569918  9.838405 13.133274  6.294591
##  [241] 11.435683 12.526420  9.695481 10.365049 11.217484 14.691543
##  [247]  8.755394 12.132104 11.279200 10.417579  7.493334 10.887129
##  [253]  7.245822 10.338817  7.079103  9.607539 10.985740 13.674416
##  [259] 12.030277 14.098874  5.744304 11.460750 12.578230 10.253743
##  [265] 11.882929  9.845326  8.056166  8.729761 10.152195  4.997775
##  [271] 12.509969 12.786232  6.641456  9.903537 11.857875  7.548089
##  [277] 12.451217  7.753360 14.602899  7.847823 10.121622  8.976844
##  [283] 12.988455  9.643468 10.660618  8.232832  9.203299 11.052748
##  [289] 10.827320  7.817171 14.710321 10.343169  7.600911 13.353695
##  [295]  7.730682  8.801983  8.238874 10.979789  8.717679  9.547537
##  [301] 13.485067 11.987796  9.048575  9.093221  9.708300 13.160537
##  [307]  8.501214 10.408256 10.341040 11.842985 10.787215 10.455666
##  [313] 10.961303  9.897071 12.063068 10.388570  5.232640 10.212632
##  [319]  9.168063 11.527305 11.064398  8.130666  8.765552  9.560698
##  [325]  9.471941 10.801253  8.343439  9.092798  8.993657  6.577245
##  [331] 10.170606 10.413236 10.055404 10.568247  8.760656 10.140012
##  [337]  6.723026  8.680347  8.266096  9.452164  8.276825 14.123675
##  [343]  9.000090  6.476632  9.587959  9.415127 10.881459 12.835478
##  [349] 10.800449  9.953130 11.110803  9.441150 13.570628  9.575759
##  [355] 11.406098 10.351505  7.393762  6.673977 10.063727  9.360981
##  [361] 10.460610 10.506465 11.229436 11.243813 12.661992  9.737340
##  [367]  7.126114 11.047932 10.055418 10.241012 10.083342  8.385904
##  [373] 10.343019  9.540179  7.566899  9.628558 12.321279 10.089569
##  [379]  8.183011 10.551692 11.128033 10.955370 11.341588  9.201615
##  [385] 11.814777 11.743223 10.039169  9.078289  8.451699  6.823201
##  [391] 10.597537 11.220009 11.470236  9.982190 10.041207 10.247816
##  [397]  8.843197 10.053110 13.680848  7.403075 10.137422 10.271766
##  [403] 11.418725 10.240026 14.141965  9.001700 11.611678  9.816600
##  [409] 12.729715 11.555154 11.366069  8.218536 10.924162  5.373726
##  [415] 10.467843  7.916491 10.415842  8.585230 11.520175 10.659782
##  [421]  8.320220 11.278641 10.837631  8.516253 10.378213 12.512152
##  [427]  9.967889  8.173929  6.671710 15.218623 13.449489 11.393140
##  [433]  9.468915 10.642329 10.808465  7.251845  5.699700 12.237461
##  [439] 10.747032 11.154415  8.612458 10.465620 10.589732 11.120992
##  [445]  9.319715 12.197231 10.658949  7.588036 11.823393  9.111767
##  [451] 10.936205  9.554333  9.861938 14.050767  8.930462 12.321263
##  [457]  6.881655 10.201169 11.051868 10.408040  8.716869 10.019200
##  [463] 10.566364  7.771325 10.104785  9.173017 10.257459 10.761947
##  [469] 12.215325  7.764318  8.602626 11.422243  7.408047 11.794063
##  [475]  8.529538  8.121229 12.470456  6.922619 11.231363 11.869179
##  [481] 11.391027  8.827929 12.773579  8.511997 10.465581  6.767905
##  [487]  9.633702  6.359778  7.223402 11.380517 12.214352  7.106422
##  [493]  6.764721  7.747446 10.057217  9.100802 12.338215  7.240901
##  [499] 10.366435 10.170919 12.867823 12.733670  9.380408  9.761651
##  [505] 12.477015  6.908273  8.466669  7.318234  6.436416 11.612151
##  [511]  6.875457 13.087651 10.061175  9.078395 12.833525 10.837058
##  [517]  5.870572  8.643784  6.040841 10.549063  9.278589  5.320789
##  [523] 12.590369 10.488914  7.745647  9.947821 12.103383  8.741324
##  [529]  8.495618  8.020349  9.571557  8.604555  9.434923 10.034535
##  [535]  9.195649  8.229545  8.729917 12.090888  9.102035  9.502413
##  [541]  9.045790 12.147372  7.596758  8.588865  6.762167  9.789555
##  [547]  8.996841 10.384739 11.287074 10.937389 11.986257  8.330858
##  [553]  8.978562  9.694571 10.033279  9.889012  9.112075 11.791119
##  [559]  9.155620 10.635814  7.113286 10.389701 11.526090  6.945917
##  [565] 10.923579 10.299409 11.920198  6.310212 10.337092  8.254168
##  [571]  9.689197 11.441656 10.436366 12.151621  9.273815 11.446652
##  [577] 10.118846  8.271199  9.765145 11.546247 10.531920  8.630988
##  [583] 12.151549  9.047838 12.509306 10.252560  7.161832  9.842317
##  [589] 11.452313 12.474908  7.737535  8.022904 12.579499  8.700878
##  [595]  9.146234 11.660769 12.627131  8.559910  9.553079 12.293841
##  [601] 12.151244 13.311447 12.607848 10.575066 12.437909 11.328517
##  [607]  7.812120  9.805098 10.017278 12.122453 11.847622 11.370762
##  [613] 10.893780 10.859467  8.754256  7.926141 10.476805  7.746161
##  [619] 12.237555  8.313400 11.548428  6.429824  8.421050 12.096702
##  [625] 11.940426  7.199582  9.219490  8.966183  9.414307 10.653278
##  [631]  8.897892  6.091280 11.104467 10.784966  9.182322 12.490090
##  [637]  8.115354 12.186364  5.656012  8.837560  8.009017  7.810303
##  [643] 14.627401  9.050505  8.495080  8.948579  8.724752  9.060927
##  [649] 11.022329 11.465622 10.215757  8.516648  8.214322  9.463934
##  [655] 10.579965  7.490422 10.694420  8.534030  8.009512 13.076762
##  [661]  8.848184 10.087722  7.016782  8.644249 11.911603  8.697546
##  [667]  9.762436 10.290520  8.501370 11.536856 13.058135  6.492136
##  [673] 13.912322 12.976486 12.177070  9.614330  5.311618 10.193392
##  [679]  7.909131  9.273922 11.366480  6.418213 11.381299 10.815085
##  [685]  6.920792  9.141023  6.823937 11.027351 12.884059  9.607894
##  [691]  9.981544 12.865699 10.950327 10.133243 11.407761  9.718252
##  [697] 11.475119 10.963528 12.426969 11.235829  8.226629  7.434765
##  [703] 11.935733  7.596245  7.251504 11.545957  6.932292  8.676818
##  [709]  8.943694  9.845949 11.597504 10.849533  4.831989 11.921087
##  [715]  8.992689  8.888308 10.236872  9.576607  9.402455  9.378480
##  [721]  7.907022  8.145634 12.440541 11.320843  9.160382 10.925341
##  [727] 11.102343 12.647350 10.414794 10.719100 10.519619  9.318163
##  [733] 11.685654 11.713847  8.648433 10.459505  7.504669 12.248062
##  [739]  9.394200 10.706285  7.750317 11.203744 12.009124  9.425609
##  [745] 11.666560  8.568609 12.341600 11.199541 10.140694 11.429299
##  [751]  9.704917  8.162784  6.199492 10.027685  8.168899 11.991793
##  [757]  9.636300  6.353169  9.374077 10.027891  9.366636 10.115856
##  [763]  9.911957 10.052164 10.338506 10.424466 10.393646  7.085721
##  [769] 12.187871  8.063818 14.312979 11.442533 10.101432  7.772971
##  [775] 13.310598 10.133548  6.174484  8.477690 11.465437 11.092138
##  [781] 10.288560  8.002043  7.669993 11.730197  7.272759 10.894651
##  [787] 11.136982  9.331485 10.256720  9.391776  8.866971  8.490527
##  [793]  9.174101 12.542767 10.753966  6.908122 10.324144  7.116835
##  [799]  7.732575 12.528161  9.097347  9.239470 10.316186 10.639789
##  [805]  9.445912 10.760491  8.983163 14.582371  6.208947  9.434480
##  [811] 14.120271  8.815701  6.422320 11.237378 11.158284  5.780618
##  [817]  9.076422  9.552516 11.393504 11.449568  9.694999  8.312101
##  [823] 11.673172 10.256632 12.091593 10.433905  9.555254 12.565744
##  [829]  9.528480 12.449632 15.988835 12.679276  7.737954  7.810784
##  [835] 12.070282 10.383173 10.976270 10.485551 13.154251 12.272135
##  [841] 14.529003 10.074703 13.069535 10.495947  9.729350 11.945380
##  [847] 13.032937 12.799007 10.778742 11.883553  9.679958  6.318334
##  [853]  8.536766 11.592583  7.443386  8.656187  9.844681  5.929712
##  [859]  9.424512  7.576136 11.683780  5.910109  8.554296 12.402981
##  [865]  7.367179 12.761268 10.856347 10.976455 11.213787  8.588869
##  [871] 12.335509  9.673621 14.421098  7.701439 13.114308  8.690903
##  [877]  8.336331 11.462064 10.757724  6.754925 10.762350  8.370277
##  [883] 10.380685 10.674115  2.579962  9.048056 10.532440  8.260414
##  [889]  8.408620 10.014655 12.106799  8.413426 11.544194 10.871643
##  [895]  9.328471 14.124535 12.210289 11.875979  5.890628 11.748795
##  [901] 11.853481 12.279648  9.370890 12.019518 11.759077  9.407606
##  [907]  6.924401  6.065852 10.483765  7.842133 11.068360  9.947260
##  [913] 12.110985 10.520425 12.771584 12.495212 10.769190 11.160136
##  [919] 11.445106 13.525150 12.042165  9.704007  8.470795  9.510217
##  [925] 13.854694  6.052561  8.558237 11.366007 11.381257  8.279817
##  [931]  8.082813  9.657777 12.485699 11.117435 11.323528  8.704344
##  [937] 10.977728  9.003432  9.365509 11.142029 10.825530  7.877593
##  [943] 12.659543  8.862329 12.136987  6.539417 10.165011  8.791393
##  [949]  8.993487 13.453797 10.751920  9.489786  6.654352  9.825537
##  [955] 10.005705  9.642679 10.751665  7.469646  7.105550 12.792104
##  [961] 10.499848  7.564194  9.251686 13.425160  8.782745  9.033734
##  [967] 10.395618  9.896965 11.247417 11.713770 12.503329  9.435977
##  [973]  9.436815 12.569230 13.659557 10.405785 10.623483 12.985818
##  [979]  6.655386  5.488771  8.269300 10.739604 10.132951  9.589131
##  [985]  8.098203  9.619237 14.336524  9.590008  6.885352 10.787594
##  [991] 10.390811 11.292351 13.446769  8.439219  9.059206 12.014421
##  [997] 10.413143  5.846810  8.810353  9.456623
mean(n2)
## [1] 9.936038
sd(n2)
## [1] 2.028621
hist(n2,col="red") #畫出直方圖