lowbirthweight <- read.csv("C:/Users/Kajal/Downloads/lowbirthwt.csv")
headcirc_gestageLM<- lm(headcirc ~ gestage, data=lowbirthweight)
summary(headcirc_gestageLM)
##
## Call:
## lm(formula = headcirc ~ gestage, data = lowbirthweight)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5358 -0.8760 -0.1458 0.9041 6.9041
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.91426 1.82915 2.14 0.0348 *
## gestage 0.78005 0.06307 12.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.59 on 98 degrees of freedom
## Multiple R-squared: 0.6095, Adjusted R-squared: 0.6055
## F-statistic: 152.9 on 1 and 98 DF, p-value: < 2.2e-16
anova(headcirc_gestageLM)
## Analysis of Variance Table
##
## Response: headcirc
## Df Sum Sq Mean Sq F value Pr(>F)
## gestage 1 386.87 386.87 152.95 < 2.2e-16 ***
## Residuals 98 247.88 2.53
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(headcirc_gestageLM)$r.squared
## [1] 0.6094799
headcirc_birthwtLM<- lm(headcirc ~ birthwt, data=lowbirthweight)
summary(headcirc_birthwtLM)
##
## Call:
## lm(formula = headcirc ~ birthwt, data = lowbirthweight)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1622 -0.9399 -0.3071 0.5471 10.0398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.822e+01 6.447e-01 28.26 <2e-16 ***
## birthwt 7.492e-03 5.699e-04 13.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.531 on 98 degrees of freedom
## Multiple R-squared: 0.6381, Adjusted R-squared: 0.6344
## F-statistic: 172.8 on 1 and 98 DF, p-value: < 2.2e-16
anova(headcirc_birthwtLM)
## Analysis of Variance Table
##
## Response: headcirc
## Df Sum Sq Mean Sq F value Pr(>F)
## birthwt 1 405.06 405.06 172.82 < 2.2e-16 ***
## Residuals 98 229.69 2.34
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(headcirc_birthwtLM)$r.squared
## [1] 0.6381409
headcirc_lengthLM<- lm(headcirc ~ length, data=lowbirthweight)
summary(headcirc_lengthLM)
##
## Call:
## lm(formula = headcirc ~ length, data = lowbirthweight)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0143 -1.0383 -0.2883 0.6013 8.9644
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.84406 1.85829 4.221 5.44e-05 ***
## length 0.50532 0.05024 10.059 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.785 on 98 degrees of freedom
## Multiple R-squared: 0.508, Adjusted R-squared: 0.503
## F-statistic: 101.2 on 1 and 98 DF, p-value: < 2.2e-16
anova(headcirc_lengthLM)
## Analysis of Variance Table
##
## Response: headcirc
## Df Sum Sq Mean Sq F value Pr(>F)
## length 1 322.45 322.45 101.18 < 2.2e-16 ***
## Residuals 98 312.30 3.19
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(headcirc_lengthLM)$r.squared
## [1] 0.5079886
Based on the highest R-Squared value, we can say that birth weight has the strongest linear association with head circumference. The higher R-Squared value implies that birth weight is the better predictor for head circumference.
multLM<-lm(headcirc ~ gestage + birthwt, data=lowbirthweight)
summary(multLM)
##
## Call:
## lm(formula = headcirc ~ gestage + birthwt, data = lowbirthweight)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0350 -0.7271 -0.0765 0.3472 8.5402
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.3080154 1.5789429 5.262 8.54e-07 ***
## gestage 0.4487328 0.0672460 6.673 1.56e-09 ***
## birthwt 0.0047123 0.0006312 7.466 3.60e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.274 on 97 degrees of freedom
## Multiple R-squared: 0.752, Adjusted R-squared: 0.7469
## F-statistic: 147.1 on 2 and 97 DF, p-value: < 2.2e-16
anova(multLM)
## Analysis of Variance Table
##
## Response: headcirc
## Df Sum Sq Mean Sq F value Pr(>F)
## gestage 1 386.87 386.87 238.378 < 2.2e-16 ***
## birthwt 1 90.46 90.46 55.739 3.597e-11 ***
## Residuals 97 157.42 1.62
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SSRfull<-(386.87+90.46)
SSRfull
## [1] 477.33
(477.33/2)/1.62
## [1] 147.3241
With a \(p = <2.2e-16\), which is below \(\alpha = 0.5\), we can reject the null hypothesis. There is sufficient evidence to reject the claim that \(\hat\beta_{ga}\) = \(\hat\beta_{bw}\) = 0. This implies that the predictors gestational age and birth weight are significant predictors of head circumference.
confint(multLM, level=0.95)
## 2.5 % 97.5 %
## (Intercept) 5.174250734 11.441780042
## gestage 0.315268189 0.582197507
## birthwt 0.003459568 0.005964999
multLM2<-lm(headcirc ~ gestage + birthwt + length, data=lowbirthweight)
summary(multLM2)
##
## Call:
## lm(formula = headcirc ~ gestage + birthwt + length, data = lowbirthweight)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0359 -0.7278 -0.0755 0.3469 8.5403
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.3200783 1.9555657 4.255 4.87e-05 ***
## gestage 0.4489698 0.0712246 6.304 8.83e-09 ***
## birthwt 0.0047183 0.0008521 5.537 2.67e-07 ***
## length -0.0006928 0.0656161 -0.011 0.992
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.281 on 96 degrees of freedom
## Multiple R-squared: 0.752, Adjusted R-squared: 0.7442
## F-statistic: 97.03 on 3 and 96 DF, p-value: < 2.2e-16
anova(multLM2)
## Analysis of Variance Table
##
## Response: headcirc
## Df Sum Sq Mean Sq F value Pr(>F)
## gestage 1 386.87 386.87 235.9203 < 2.2e-16 ***
## birthwt 1 90.46 90.46 55.1642 4.536e-11 ***
## length 1 0.00 0.00 0.0001 0.9916
## Residuals 96 157.42 1.64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SSRfull<-(386.87+90.46+0.0)
SSRfull
## [1] 477.33
(477.33/3)/1.64
## [1] 97.01829
With a \(p = <2.2e-16\), which is below \(\alpha = 0.5\), we can reject the null hypothesis. There is sufficient evidence to reject the claim that \(\hat\beta_{ga}\) = \(\hat\beta_{bw}\) = \(\hat\beta_{l}\) = 0. This implies that the predictors gestational age, birth weight, and length are significant predictors of head circumference.
confint(multLM2, level=0.95)
## 2.5 % 97.5 %
## (Intercept) 4.43831099 12.201845545
## gestage 0.30759008 0.590349620
## birthwt 0.00302685 0.006409729
## length -0.13093973 0.129554084