In this example, we match up two vectors of strings in an optimal way using the stringdist package. This is a common task when working with sociological data at the country-level or for lower administrative divisions such as US states.
First we load some libraries:
# libs --------------------------------------------------------------------
library(pacman)
p_load(stringdist, reshape2, dplyr)
Then we make up some example data. I’ve picked five countries that have names that usually differ somewhat between Danish and English, sometimes not at all, and sometimes a lot.
# data --------------------------------------------------------------------
#EN names
EN = c("Denmark", "Norway", "USA", "Russia", "Germany")
#DA names
DA = c("Danmark", "Norge", "USA", "Rusland", "Tyskland")
Next we calculate the distances between strings across vectors and reshape the data a bit:
# distances ----------------------------------------------------------------
#matrix
dst = stringdist::stringdistmatrix(EN, DA)
#names
rownames(dst) = EN; colnames(dst) = DA
dst
## Danmark Norge USA Rusland Tyskland
## Denmark 1 7 7 6 7
## Norway 6 3 6 6 7
## USA 7 5 0 7 8
## Russia 7 6 6 4 6
## Germany 5 6 7 5 6
#conver to 2-column data.frame
dst_df = melt(dst, c("EN", "DA"))
dst_df
## EN DA value
## 1 Denmark Danmark 1
## 2 Norway Danmark 6
## 3 USA Danmark 7
## 4 Russia Danmark 7
## 5 Germany Danmark 5
## 6 Denmark Norge 7
## 7 Norway Norge 3
## 8 USA Norge 5
## 9 Russia Norge 6
## 10 Germany Norge 6
## 11 Denmark USA 7
## 12 Norway USA 6
## 13 USA USA 0
## 14 Russia USA 6
## 15 Germany USA 7
## 16 Denmark Rusland 6
## 17 Norway Rusland 6
## 18 USA Rusland 7
## 19 Russia Rusland 4
## 20 Germany Rusland 5
## 21 Denmark Tyskland 7
## 22 Norway Tyskland 7
## 23 USA Tyskland 8
## 24 Russia Tyskland 6
## 25 Germany Tyskland 6
#sort
dst_df = dplyr::arrange(dst_df, value)
dst_df
## EN DA value
## 1 USA USA 0
## 2 Denmark Danmark 1
## 3 Norway Norge 3
## 4 Russia Rusland 4
## 5 Germany Danmark 5
## 6 USA Norge 5
## 7 Germany Rusland 5
## 8 Norway Danmark 6
## 9 Russia Norge 6
## 10 Germany Norge 6
## 11 Norway USA 6
## 12 Russia USA 6
## 13 Denmark Rusland 6
## 14 Norway Rusland 6
## 15 Russia Tyskland 6
## 16 Germany Tyskland 6
## 17 USA Danmark 7
## 18 Russia Danmark 7
## 19 Denmark Norge 7
## 20 Denmark USA 7
## 21 Germany USA 7
## 22 USA Rusland 7
## 23 Denmark Tyskland 7
## 24 Norway Tyskland 7
## 25 USA Tyskland 8
#save copy
dst_df_orig = dst_df
Finally, we loop around this object and pick the best matches one by one:
# match -------------------------------------------------------------------
#storing best matches
best_matches = matrix(nrow=0, ncol=3)
#keep matching and removing pairs until we run out of data
while (nrow(dst_df) > 0) {
#top value is always the best match because we sorted the data initially
best_matches = rbind(best_matches, dst_df[1, ])
#remove rows with the same names
#i.e. keep only those that have non-identical names in both columns to the ones we saved
dst_df = dplyr::filter(dst_df, (!dst_df[1, 1] == dst_df[, 1]) & (!dst_df[1, 2] == dst_df[, 2]))
}
#view matches
best_matches
## EN DA value
## 1 USA USA 0
## 2 Denmark Danmark 1
## 3 Norway Norge 3
## 4 Russia Rusland 4
## 5 Germany Tyskland 6
As can be seen, all the pairs were matched up correctly. Even Germany which has a totally dissimilar name to the Danish one (which is related to the German and Dutch names: Deutschland, Duitsland). The reason is simply that it was the last pair in the dataset, so it got paired up no matter how distant. This can cause trouble if one ends up with two a group of names with no sensible matches, so beware of the matching produced.
One can modify this setup so that it stops when distances becomes too large, like the join functions in the fuzzyjoin package. One can also use other string distance measures. Here we used the default one from stringdist package, but it has a number of other ones that may be more suitable.
Finally, an example implementation of the above system using stringdist and dplyr as the main workhorses. Our test tables consist of partial, but real dataset from my latest project on Argentina:
d1
## Province European
## 1 Buenos Aires 0.76
## 2 Buenos Aires City (DC) 0.80
## 3 Catamarca 0.50
## 4 Chaco 0.66
## 5 Chubut 0.54
## 6 Córdoba 0.65
## 7 Corrientes 0.69
## 8 Entre Ríos 0.78
## 9 Formosa 0.68
## 10 Jujuy 0.31
## 11 La Pampa 0.81
## 12 La Rioja 0.50
## 13 Mendoza 0.70
## 14 Misiones 0.71
## 15 Neuquén 0.72
## 16 Río Negro 0.69
## 17 Salta 0.31
## 18 San Juan 0.62
## 19 San Luis 0.67
## 20 Santa Cruz 0.55
## 21 Santa Fe 0.80
## 22 Santiago del Estero 0.43
## 23 Tierra del Fuego 0.55
## 24 Tucumán 0.61
d2
## Province Latitude
## 1 Buenos Aires 34.92
## 2 Catamarca 28.47
## 3 Chaco 27.45
## 4 Chubut 43.30
## 5 Ciudad de Buenos Aires 34.60
## 6 Cordoba 31.42
## 7 Corrientes 27.47
## 8 Entre Rios 31.74
## 9 Formosa 26.19
## 10 Jujuy 24.19
## 11 La Pampa 36.62
## 12 La Rioja 29.41
## 13 Mendoza 32.89
## 14 Misiones 27.36
## 15 Neuquen 38.95
## 16 Rio Negro 40.81
## 17 Salta 24.78
## 18 San Juan 31.54
## 19 San Luis 33.30
## 20 Santa Cruz 51.62
## 21 Santa Fe 31.61
## 22 Santiago del Estero 27.78
## 23 Tierra del Fuego 54.80
## 24 Tucuman 26.81
We see that the names generally, but not entirely match up. There are some missing diacritics and the capital has divergent names. The join function looks like this:
stringdist_optimal_join = function(x, y, x_col, y_col, preview = F, ...) {
library(reshape2); library(dplyr); library(fuzzyjoin); library(kirkegaard)
#devtools::install_github("deleetdk/kirkegaard")
#check x, y
is_(x, class = "data.frame", error_on_false = T)
is_(y, class = "data.frame", error_on_false = T)
is_(preview, class = "logical", error_on_false = T)
if (missing(x_col) & missing(y_col)) {
#extract vctrs
x_names = rownames(x)
y_names = rownames(y)
message("x_col or y_col not given, using rownames from both")
} else {
#extract vctrs
x_names = x[[x_col]]
y_names = y[[y_col]]
}
#check factors
if (is.factor(x_names)) {
x_names %<>% as.character()
warning("x input has a fctr column. This was converted to a chr column.")
}
if (is.factor(y_names)) {
y_names %<>% as.character()
warning("y input has a fctr column. This was converted to a chr column.")
}
#check duplicates
if (any(duplicated(x_names))) stop("Duplicate names in x!")
if (any(duplicated(y_names))) stop("Duplicate names in y!")
#distances
dst = stringdist::stringdistmatrix(x_names, y_names, ...)
#names
rownames(dst) = x_names; colnames(dst) = y_names
#conver to 2-column data.frame
dst_df = melt(dst, c("x", "y"))
#sort
dst_df = dplyr::arrange(dst_df, value)
#storing best matches
best_matches = matrix(nrow=0, ncol=3)
#keep matching and removing pairs until we run out of data
while (nrow(dst_df) > 0) {
#top value is always the best match because we sorted the data initially
best_matches = rbind(best_matches, dst_df[1, ])
#remove rows with the same names
#i.e. keep only those that have non-identical names in both columns to the ones we saved
dst_df = dplyr::filter(dst_df, (!dst_df[1, 1] == dst_df[, 1]) & (!dst_df[1, 2] == dst_df[, 2]))
}
#return just match info?
if (preview) return(best_matches)
#make rownames to reorder with
rownames(x) = x_names
rownames(y) = y_names
#reorder x, y
x = x[best_matches$x, ]
y = y[best_matches$y, ]
#insert matching columns
x$..names = best_matches$x
y$..names = best_matches$x
#join
d_out = dplyr::full_join(x, y, by = c("..names" = "..names"))
#remove matching columns
d_out$..names = NULL
#insert stringdist value
d_out$.stringdist = best_matches$value
#return
d_out
}
And then we join the tables:
stringdist_optimal_join(d1, d2, "Province", "Province")
##
## Attaching package: 'kirkegaard'
## The following object is masked from 'package:base':
##
## +
## Province.x European Province.y Latitude
## 1 Buenos Aires 0.76 Buenos Aires 34.92
## 2 Catamarca 0.50 Catamarca 28.47
## 3 Chaco 0.66 Chaco 27.45
## 4 Chubut 0.54 Chubut 43.30
## 5 Corrientes 0.69 Corrientes 27.47
## 6 Formosa 0.68 Formosa 26.19
## 7 Jujuy 0.31 Jujuy 24.19
## 8 La Pampa 0.81 La Pampa 36.62
## 9 La Rioja 0.50 La Rioja 29.41
## 10 Mendoza 0.70 Mendoza 32.89
## 11 Misiones 0.71 Misiones 27.36
## 12 Salta 0.31 Salta 24.78
## 13 San Juan 0.62 San Juan 31.54
## 14 San Luis 0.67 San Luis 33.30
## 15 Santa Cruz 0.55 Santa Cruz 51.62
## 16 Santa Fe 0.80 Santa Fe 31.61
## 17 Santiago del Estero 0.43 Santiago del Estero 27.78
## 18 Tierra del Fuego 0.55 Tierra del Fuego 54.80
## 19 Córdoba 0.65 Cordoba 31.42
## 20 Entre Ríos 0.78 Entre Rios 31.74
## 21 Neuquén 0.72 Neuquen 38.95
## 22 Río Negro 0.69 Rio Negro 40.81
## 23 Tucumán 0.61 Tucuman 26.81
## 24 Buenos Aires City (DC) 0.80 Ciudad de Buenos Aires 34.60
## .stringdist
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## 7 0
## 8 0
## 9 0
## 10 0
## 11 0
## 12 0
## 13 0
## 14 0
## 15 0
## 16 0
## 17 0
## 18 0
## 19 1
## 20 1
## 21 1
## 22 1
## 23 1
## 24 20