Ejemplo 1: Indice de Legitimidad de la protesta

Encuesta nacional sobre conflictos sociales y representación política del IOP-PUCP, 2012.

Cargar Datos

Descargar base de datos y cuestionario de PAIDEIA e importar datos al R

library(foreign)
iop12 <- read.spss("IOP_1112_01_B.sav", to.data.frame = T)

Variables del índice

El índice se construye a partir de las preguntas: P31A, P31B, P31C y P31D

Distribución de frecuencia de las preguntas

prop.table(table(iop12$P31A))*100
## 
##    Muy de acuerdo        De acuerdo     En desacuerdo Muy en desacuerdo 
##         19.950125         58.852868         15.710723          1.163757 
##           NS / NR 
##          4.322527
prop.table(table(iop12$P31B))*100
## 
##    Muy de acuerdo        De acuerdo     En desacuerdo Muy en desacuerdo 
##          9.226933         50.207814         32.668329          2.244389 
##           NS / NR 
##          5.652535
prop.table(table(iop12$P31C))*100
## 
##    Muy de acuerdo        De acuerdo     En desacuerdo Muy en desacuerdo 
##         17.955112         48.877805         27.098919          2.493766 
##           NS / NR 
##          3.574397
prop.table(table(iop12$P31D))*100
## 
##    Muy de acuerdo        De acuerdo     En desacuerdo Muy en desacuerdo 
##         22.776392         53.200333         18.204489          2.078138 
##           NS / NR 
##          3.740648

Preparación de las variables del índice

Paso 1: Convertirlas en variables numéricas

p31ar <- as.numeric(iop12$P31A)
p31br <- as.numeric(iop12$P31B)
p31cr <- as.numeric(iop12$P31C)
p31dr <- as.numeric(iop12$P31D)

table(p31ar)
## p31ar
##   1   2   3   4   5 
## 240 708 189  14  52

Paso 2: Marcar los valores perdidos

p31ar[p31ar==5] <- NA
p31br[p31br==5] <- NA
p31cr[p31cr==5] <- NA
p31dr[p31dr==5] <- NA

Paso 3: “Voltear” los valores

Cambiar el sentido de los valores de algunos ítems del índice para que todos midan la legitimidad en el mismo sentido: valores bajos = baja legitimidad; valores altos = alta legitimidad

Ello implica voltear las preguntas P31A y P31D:

p31ar <- (p31ar-5)*(-1)
p31dr <- (p31dr-5)*(-1)

Paso 4: Calcular el índice

iop12$legit.prot <- (p31ar+p31br+p31cr+p31dr)-4
table(iop12$legit.prot)
## 
##   1   2   3   4   5   6   7   8   9  10  11  12 
##   2   8  30  63 148 328 235 169  77  28   8   2

Describimos el índice

Para toda la muestra:

summary(iop12$legit.prot)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   6.000   6.000   6.512   8.000  12.000     105
sd(iop12$legit.prot, na.rm=T)
## [1] 1.621513

Por grupos:

  1. Por ámbito de residencia
library(doBy)
leg.1 <- summaryBy(legit.prot~AMBITOS, data = iop12,
          FUN = function(x) {c(Mediana = median(x, na.rm=T), 
                               Media = mean(x, na.rm=T),
                               Desv.Est = sd(x, na.rm=T))})
leg.1
##           AMBITOS legit.prot.Mediana legit.prot.Media legit.prot.Desv.Est
## 1     Lima-Callao                  6         6.278729            1.599805
## 2 Interior Urbano                  7         6.704082            1.696919
## 3  Interior Rural                  6         6.517588            1.406494
  1. Por nivel socioeconómico
leg.2 <- summaryBy(legit.prot~NSEGrup, data = iop12,
          FUN = function(x) {c(Mediana = median(x, na.rm=T), 
                               Media = mean(x, na.rm=T),
                               Desv.Est = sd(x, na.rm=T))})
leg.2
##   NSEGrup legit.prot.Mediana legit.prot.Media legit.prot.Desv.Est
## 1     A/B                  6         6.118143            1.703302
## 2       C                  6         6.637168            1.648356
## 3     D/E                  6         6.609195            1.539172

Ejemplo 2: Índice de Tolerancia en la EMV

Identificar las variables:

load("wvs_peru.rdata")
names(wvs.peru)
##    [1] "S003"      "S001"      "S002"      "S002EVS"   "S003A"    
##    [6] "S004"      "S006"      "S007"      "S007_01"   "S008"     
##   [11] "S009"      "S009A"     "S010"      "S010_01"   "S010_02"  
##   [16] "S010_03"   "S010_04"   "S011"      "S012"      "S013"     
##   [21] "S013B"     "S014"      "S015"      "S016"      "S017"     
##   [26] "S017A"     "S018"      "S018A"     "S019"      "S019A"    
##   [31] "S020"      "S021"      "S021A"     "S022"      "S023"     
##   [36] "S024"      "S024A"     "S025"      "S025A"     "S026"     
##   [41] "S027"      "S028"      "A001"      "A001_CO"   "A002"     
##   [46] "A002_CO"   "A003"      "A003_CO"   "A004"      "A004_CO"  
##   [51] "A005"      "A005_CO"   "A006"      "A006_CO"   "A007"     
##   [56] "A008"      "A009"      "A010"      "A011"      "A012"     
##   [61] "A013"      "A014"      "A015"      "A016"      "A017"     
##   [66] "A018"      "A019"      "A020"      "A021"      "A022"     
##   [71] "A023"      "A024"      "A025"      "A026"      "A026_01"  
##   [76] "A027"      "A028"      "A029"      "A030"      "A031"     
##   [81] "A032"      "A033"      "A034"      "A035"      "A036"     
##   [86] "A037"      "A038"      "A039"      "A040"      "A041"     
##   [91] "A042"      "A043"      "A043_01"   "A043_01F"  "A043_F"   
##   [96] "A043B"     "A044"      "A045"      "A046"      "A047"     
##  [101] "A048"      "A049"      "A050"      "A050_01"   "A050_02"  
##  [106] "A050_03"   "A050_04"   "A051"      "A052"      "A053"     
##  [111] "A054"      "A055"      "A056"      "A057"      "A058"     
##  [116] "A059"      "A060"      "A061"      "A062"      "A063"     
##  [121] "A064"      "A065"      "A066"      "A067"      "A068"     
##  [126] "A069"      "A070"      "A071"      "A071B"     "A071C"    
##  [131] "A072"      "A073"      "A074"      "A075"      "A076"     
##  [136] "A077"      "A078"      "A079"      "A080"      "A080_F"   
##  [141] "A081"      "A082"      "A083"      "A084"      "A085"     
##  [146] "A086"      "A087"      "A088"      "A088B"     "A088C"    
##  [151] "A089"      "A090"      "A091"      "A092"      "A093"     
##  [156] "A094"      "A095"      "A096"      "A097"      "A097_F"   
##  [161] "A098"      "A099"      "A100"      "A101"      "A102"     
##  [166] "A103"      "A104"      "A105"      "A106"      "A106B"    
##  [171] "A106C"     "A107"      "A108"      "A109"      "A110"     
##  [176] "A111"      "A112"      "A113"      "A114"      "A115"     
##  [181] "A116"      "A117"      "A118"      "A119"      "A120"     
##  [186] "A121"      "A122"      "A123"      "A124_01"   "A124_02"  
##  [191] "A124_03"   "A124_04"   "A124_05"   "A124_06"   "A124_07"  
##  [196] "A124_08"   "A124_09"   "A124_10"   "A124_11"   "A124_12"  
##  [201] "A124_13"   "A124_14"   "A124_15"   "A124_16"   "A124_17"  
##  [206] "A124_18"   "A124_19"   "A124_20"   "A124_21"   "A124_22"  
##  [211] "A124_23"   "A124_24"   "A124_25"   "A124_26"   "A124_27"  
##  [216] "A124_28"   "A124_29"   "A124_30"   "A124_31"   "A124_32"  
##  [221] "A124_33"   "A124_34"   "A124_35"   "A124_36"   "A124_37"  
##  [226] "A124_38"   "A124_39"   "A124_40"   "A124_41"   "A124_42"  
##  [231] "A124_43"   "A124_44"   "A124_45"   "A124_46"   "A124_47"  
##  [236] "A124_48"   "A124_49"   "A124_50"   "A124_51"   "A124_52"  
##  [241] "A124_53"   "A124_54"   "A124_55"   "A124_56"   "A124_57"  
##  [246] "A124_58"   "A124_59"   "A124_60"   "A124_61"   "A165"     
##  [251] "A166"      "A167"      "A168"      "A168_01"   "A168A"    
##  [256] "A169"      "A170"      "A171"      "A172"      "A173"     
##  [261] "A174"      "A189"      "A190"      "A191"      "A192"     
##  [266] "A193"      "A194"      "A195"      "A196"      "A197"     
##  [271] "A198"      "A199"      "A200"      "A201"      "A202"     
##  [276] "A203"      "A204"      "A205"      "A206"      "A207"     
##  [281] "A208"      "A209"      "A210"      "A211"      "A212"     
##  [286] "A222"      "A213"      "A214"      "A215"      "A216"     
##  [291] "A217"      "A218"      "A219"      "A220"      "A221"     
##  [296] "B001"      "B002"      "B003"      "B004"      "B005"     
##  [301] "B006"      "B007"      "B008"      "B009"      "B010"     
##  [306] "B011"      "B012"      "B013"      "B014"      "B015"     
##  [311] "B016"      "B017"      "B018"      "B019"      "B020"     
##  [316] "B021"      "B022"      "B023"      "B024"      "B025"     
##  [321] "B026"      "B027"      "B028"      "B029"      "B030"     
##  [326] "B031"      "C001"      "C002"      "C003"      "C004"     
##  [331] "C005"      "C006"      "C007"      "C008"      "C009"     
##  [336] "C010"      "C011"      "C012"      "C013"      "C014"     
##  [341] "C015"      "C016"      "C017"      "C018"      "C019"     
##  [346] "C020"      "C021"      "C022"      "C023"      "C024"     
##  [351] "C025"      "C026"      "C027"      "C027_1"    "C027_2"   
##  [356] "C027_3"    "C027_4"    "C028"      "C028_F"    "C029"     
##  [361] "C030"      "C031"      "C032"      "C033"      "C034"     
##  [366] "C035"      "C036"      "C037"      "C038"      "C039"     
##  [371] "C040"      "C041"      "C042B1"    "C042B2"    "C042B3"   
##  [376] "C042B4"    "C042B5"    "C042B6"    "C042B7"    "C049"     
##  [381] "C050"      "C051"      "C052"      "C053"      "C054"     
##  [386] "C055"      "C056"      "C057"      "C057_F"    "C058"     
##  [391] "C059"      "C060"      "C061"      "C062"      "C063"     
##  [396] "C064"      "D001"      "D001_B"    "D002"      "D003"     
##  [401] "D004"      "D005"      "D006"      "D007"      "D008"     
##  [406] "D008_F"    "D009"      "D010"      "D011"      "D012"     
##  [411] "D013"      "D014"      "D015"      "D015_F"    "D016"     
##  [416] "D017"      "D018"      "D019"      "D020"      "D021"     
##  [421] "D022"      "D023"      "D024"      "D025"      "D026"     
##  [426] "D026_01"   "D026_02"   "D026_03"   "D026_04"   "D026_05"  
##  [431] "D027"      "D028"      "D029"      "D030"      "D031"     
##  [436] "D032"      "D033"      "D034"      "D035"      "D036"     
##  [441] "D037"      "D038"      "D039"      "D040"      "D041"     
##  [446] "D042"      "D043"      "D043_01"   "D044"      "D044A"    
##  [451] "D045"      "D046"      "D047"      "D048"      "D049"     
##  [456] "D050"      "D051"      "D052"      "D053"      "D053_F"   
##  [461] "D054"      "D055"      "D056"      "D057"      "D058"     
##  [466] "D059"      "D060"      "D061"      "D062"      "D063"     
##  [471] "D063_B"    "D064"      "D064_01"   "D065"      "D066"     
##  [476] "D066_B"    "D067"      "D068"      "D069"      "D070"     
##  [481] "D071"      "D072"      "D073"      "D074"      "D075"     
##  [486] "D076"      "D077"      "D078"      "D079"      "D080"     
##  [491] "E001"      "E001_F"    "E001_HK"   "E002"      "E002_HK"  
##  [496] "E003"      "E003_F"    "E004"      "E005"      "E005_F"   
##  [501] "E005_HK"   "E006"      "E006_HK"   "E007"      "E008"     
##  [506] "E009"      "E010"      "E011"      "E012"      "E013"     
##  [511] "E014"      "E015"      "E016"      "E017"      "E018"     
##  [516] "E019"      "E020"      "E021"      "E022"      "E023"     
##  [521] "E024"      "E025"      "E025B"     "E026"      "E026B"    
##  [526] "E027"      "E028"      "E028B"     "E029"      "E030"     
##  [531] "E031"      "E032"      "E033"      "E034"      "E035"     
##  [536] "E036"      "E037"      "E038"      "E039"      "E040"     
##  [541] "E041"      "E042"      "E043"      "E044"      "E045"     
##  [546] "E046"      "E047"      "E048"      "E049"      "E050"     
##  [551] "E051"      "E052"      "E053"      "E054"      "E055"     
##  [556] "E056"      "E056_F"    "E057"      "E058"      "E059"     
##  [561] "E060"      "E061"      "E062"      "E063"      "E064"     
##  [566] "E065"      "E066"      "E067"      "E068"      "E069_01"  
##  [571] "E069_02"   "E069_03"   "E069_04"   "E069_05"   "E069_06"  
##  [576] "E069_07"   "E069_08"   "E069_09"   "E069_10"   "E069_11"  
##  [581] "E069_12"   "E069_13"   "E069_14"   "E069_15"   "E069_16"  
##  [586] "E069_17"   "E069_18"   "E069_19"   "E069_20"   "E069_21"  
##  [591] "E069_22"   "E069_23"   "E069_24"   "E069_25"   "E069_26"  
##  [596] "E069_27"   "E069_28"   "E069_29"   "E069_30"   "E069_31"  
##  [601] "E069_32"   "E069_33"   "E069_34"   "E069_35"   "E069_36"  
##  [606] "E069_37"   "E069_38"   "E069_39"   "E069_40"   "E069_41"  
##  [611] "E069_42"   "E069_43"   "E069_44"   "E069_45"   "E069_46"  
##  [616] "E069_47"   "E069_48"   "E069_49"   "E069_50"   "E069_51"  
##  [621] "E069_52"   "E069_54"   "E069_55"   "E069_56"   "E069_57"  
##  [626] "E069_58"   "E069_59"   "E069_60"   "E104"      "E105"     
##  [631] "E106"      "E107"      "E108"      "E109"      "E110"     
##  [636] "E111"      "E112"      "E113"      "E114"      "E114_MX"  
##  [641] "E115"      "E115_MX"   "E116"      "E116_MX"   "E117"     
##  [646] "E117_IQA"  "E117_IQB"  "E117_MX"   "E118"      "E119"     
##  [651] "E120"      "E121"      "E122"      "E123"      "E124"     
##  [656] "E125"      "E127"      "E128"      "E129"      "E129A"    
##  [661] "E129B"     "E129C"     "E129D"     "E130"      "E131"     
##  [666] "E132"      "E133"      "E134"      "E135"      "E136"     
##  [671] "E137"      "E138"      "E139"      "E140"      "E141"     
##  [676] "E142"      "E143"      "E144"      "E145"      "E146"     
##  [681] "E147"      "E148"      "E149"      "E150"      "E151"     
##  [686] "E152"      "E153"      "E154"      "E155"      "E156"     
##  [691] "E157"      "E158"      "E159"      "E160"      "E161"     
##  [696] "E162"      "E162_01"   "E163"      "E164"      "E165"     
##  [701] "E166"      "E167"      "E168"      "E169"      "E170"     
##  [706] "E171"      "E172"      "E173"      "E174"      "E175"     
##  [711] "E176"      "E177"      "E178"      "E178_01"   "E179"     
##  [716] "E179_01"   "E179_F"    "E179WVS"   "E180"      "E180WVS"  
##  [721] "E181"      "E181_01"   "E182"      "E183"      "E184"     
##  [726] "E185"      "E186"      "E187"      "E188"      "E189"     
##  [731] "E190"      "E191"      "E192"      "E193"      "E194"     
##  [736] "E195"      "E196"      "E197"      "E198"      "E203"     
##  [741] "E204"      "E205"      "E206"      "E207"      "E208"     
##  [746] "E209"      "E211"      "E212"      "E213"      "E214"     
##  [751] "E215"      "E216"      "E217"      "E218"      "E219"     
##  [756] "E220"      "E221B"     "E222"      "E222B"     "E224"     
##  [761] "E225"      "E226"      "E227"      "E228"      "E229"     
##  [766] "E230"      "E231"      "E232"      "E233"      "E233A"    
##  [771] "E233B"     "E234"      "E235"      "E236"      "E237"     
##  [776] "E238"      "E238_ES"   "E239"      "E239_ES"   "E240"     
##  [781] "E240_ES"   "E241"      "E241_ES"   "E242"      "E243"     
##  [786] "E244"      "E245"      "E246"      "E247"      "E248"     
##  [791] "E248B"     "E249"      "E250"      "E250B"     "E251"     
##  [796] "E252"      "E253"      "E254"      "E254B"     "E255"     
##  [801] "E256"      "E257"      "E258"      "E258B"     "E259"     
##  [806] "E259B"     "E260"      "E260B"     "E261"      "E261B"    
##  [811] "E262"      "E262B"     "E263"      "E264"      "E265_01"  
##  [816] "E265_02"   "E265_03"   "E265_04"   "E265_05"   "E265_06"  
##  [821] "E265_07"   "E265_08"   "E265_09"   "E266"      "E267"     
##  [826] "F001"      "F002"      "F003"      "F004"      "F005"     
##  [831] "F006"      "F007"      "F008"      "F009"      "F010"     
##  [836] "F011"      "F012"      "F014"      "F015"      "F016"     
##  [841] "F017"      "F018"      "F019"      "F020"      "F021"     
##  [846] "F022"      "F022_01"   "F023"      "F024"      "F025"     
##  [851] "F025_01"   "F026"      "F027"      "F027_01"   "F028"     
##  [856] "F028B"     "F029"      "F030"      "F031"      "F032"     
##  [861] "F033"      "F034"      "F035"      "F036"      "F037"     
##  [866] "F038"      "F039"      "F040"      "F041"      "F042"     
##  [871] "F043"      "F044"      "F045"      "F046"      "F047"     
##  [876] "F048"      "F049"      "F050"      "F051"      "F052"     
##  [881] "F053"      "F054"      "F055"      "F056"      "F057"     
##  [886] "F058"      "F059"      "F060"      "F061"      "F062"     
##  [891] "F062_01"   "F062_02"   "F062_03"   "F063"      "F064"     
##  [896] "F065"      "F066"      "F067"      "F068"      "F069"     
##  [901] "F070"      "F071"      "F072"      "F073"      "F074"     
##  [906] "F075"      "F076"      "F077"      "F078"      "F079"     
##  [911] "F080"      "F081"      "F082"      "F083"      "F084"     
##  [916] "F085"      "F086"      "F087"      "F088"      "F089"     
##  [921] "F090"      "F091"      "F092"      "F093"      "F094"     
##  [926] "F095"      "F096"      "F097"      "F098"      "F099"     
##  [931] "F100"      "F101"      "F102"      "F103"      "F104"     
##  [936] "F105"      "F106"      "F107"      "F108"      "F109"     
##  [941] "F110"      "F111"      "F112"      "F113"      "F114"     
##  [946] "F114_01"   "F114_02"   "F114_03"   "F115"      "F116"     
##  [951] "F117"      "F118"      "F119"      "F120"      "F121"     
##  [956] "F122"      "F123"      "F124"      "F125"      "F126"     
##  [961] "F127"      "F128"      "F129"      "F130"      "F131"     
##  [966] "F132"      "F133"      "F134"      "F135"      "F135A"    
##  [971] "F136"      "F137"      "F138"      "F139"      "F140"     
##  [976] "F141"      "F142"      "F143"      "F144"      "F144_01"  
##  [981] "F144_02"   "F145"      "F146"      "F147"      "F148"     
##  [986] "F149"      "F150"      "F151"      "F152"      "F153"     
##  [991] "F154"      "F155"      "F156"      "F157"      "F158"     
##  [996] "F159"      "F160"      "F161"      "F163"      "F164"     
## [1001] "F165"      "F166"      "F167"      "F168"      "F169"     
## [1006] "F170"      "F171"      "F172"      "F173"      "F174"     
## [1011] "F175"      "F176"      "F177"      "F178"      "F179"     
## [1016] "F186"      "F187"      "F188"      "F189"      "F190"     
## [1021] "F191"      "F191_F"    "F192"      "F193"      "F194"     
## [1026] "F195"      "F196"      "F197"      "F198"      "F199"     
## [1031] "F200"      "F201"      "F202"      "F203"      "F204"     
## [1036] "F205"      "G001"      "G001_F"    "G001CS"    "G001CS_F" 
## [1041] "G002"      "G002CS"    "G003"      "G003CS"    "G004"     
## [1046] "G005"      "G006"      "G007_01"   "G007_02"   "G007_03"  
## [1051] "G007_04"   "G007_05"   "G007_06"   "G007_07"   "G007_08"  
## [1056] "G007_09"   "G007_10"   "G007_11"   "G007_12"   "G007_13"  
## [1061] "G007_14"   "G007_15"   "G007_16"   "G007_17"   "G007_18"  
## [1066] "G007_18_B" "G007_19"   "G007_20"   "G007_21"   "G007_22"  
## [1071] "G007_23"   "G007_24"   "G007_25"   "G007_26"   "G007_27"  
## [1076] "G007_28"   "G007_29"   "G007_30"   "G007_31"   "G007_32"  
## [1081] "G007_33"   "G007_33_B" "G007_34"   "G007_34_B" "G007_35"  
## [1086] "G007_35_B" "G007_36"   "G007_36_B" "G007_37"   "G007_38"  
## [1091] "G007_39"   "G007_40"   "G007_41"   "G007_42"   "G007_43"  
## [1096] "G007_44"   "G007_45"   "G007_46"   "G007_47"   "G007_48"  
## [1101] "G007_49"   "G007_50"   "G007_51"   "G007_52"   "G007_53"  
## [1106] "G007_54"   "G007_55"   "G007_56"   "G007_57"   "G007_58"  
## [1111] "G007_59"   "G007_60"   "G007_61"   "G007_62"   "G007_63"  
## [1116] "G007_64"   "G007_65"   "G007_66"   "G007_67"   "G014"     
## [1121] "G015"      "G015B"     "G016"      "G017"      "G018"     
## [1126] "G019"      "G020"      "G021"      "G022A"     "G022B"    
## [1131] "G022C"     "G022D"     "G022E"     "G022F"     "G022G"    
## [1136] "G022H"     "G022I"     "G022J"     "G022K"     "G022L"    
## [1141] "G022M"     "G022N"     "G022O"     "G022P"     "G022Q"    
## [1146] "G022R"     "G022S"     "G023"      "G024"      "G025"     
## [1151] "G026"      "G026_01"   "G027"      "G027_01"   "G027A"    
## [1156] "G027B"     "G028"      "G029"      "G030"      "G031"     
## [1161] "G032"      "G033"      "G034"      "G035"      "G036"     
## [1166] "G037"      "G038"      "G039"      "G040"      "G041"     
## [1171] "G042"      "G043"      "G044"      "G045"      "G046"     
## [1176] "G047"      "G048"      "G049"      "G050"      "G051"     
## [1181] "H001"      "H002_01"   "H002_02"   "H002_03"   "H002_04"  
## [1186] "H002_05"   "H003_01"   "H003_02"   "H003_03"   "H004"     
## [1191] "H005"      "H006_01"   "H006_02"   "H006_03"   "H006_04"  
## [1196] "H006_05"   "H006_06"   "H007"      "H008_01"   "H008_02"  
## [1201] "H008_03"   "H008_04"   "I001"      "I002"      "U001A"    
## [1206] "U001B"     "U002A"     "U002B"     "U003A"     "U003B"    
## [1211] "U004A"     "U004B"     "U005A"     "U005B"     "U006A"    
## [1216] "U006B"     "V001"      "V001A"     "V002"      "V002A"    
## [1221] "V003"      "V004A"     "V004B"     "V004C"     "V004D"    
## [1226] "V004E"     "V004R"     "V005"      "V006"      "V006_2"   
## [1231] "V006_3"    "V006_4"    "V007A"     "V007B"     "V007C"    
## [1236] "V007D"     "V008"      "V009"      "V010"      "V011"     
## [1241] "V012"      "V013"      "V014"      "V015"      "V016"     
## [1246] "V017"      "V018"      "W001"      "W001A"     "W002A"    
## [1251] "W002B"     "W002C"     "W002D"     "W002E"     "W002R"    
## [1256] "W003"      "W004"      "W005"      "W005_2"    "W005_3"   
## [1261] "W005_4"    "W006A"     "W006B"     "W006C"     "W006D"    
## [1266] "W007"      "W008"      "W009"      "W010"      "W011"     
## [1271] "X001"      "X002"      "X002_01"   "X002_01A"  "X002_02"  
## [1276] "X002_02A"  "X002_03"   "X003"      "X003R"     "X003R2"   
## [1281] "X004"      "X005"      "X006"      "X006_01"   "X006_02"  
## [1286] "X007"      "X007_01"   "X007_02"   "X008"      "X009"     
## [1291] "X009_01"   "X010"      "X011"      "X011_01"   "X011_02"  
## [1296] "X011A"     "X012"      "X013"      "X014"      "X015"     
## [1301] "X016"      "X017"      "X018"      "X019"      "X020"     
## [1306] "X021"      "X022"      "X022_01"   "X022_02A"  "X022_02B" 
## [1311] "X022_03A"  "X022_03B"  "X022_04A"  "X022_04B"  "X022_05A" 
## [1316] "X022_05B"  "X022_06A"  "X022_06B"  "X023"      "X023R"    
## [1321] "X024"      "X024B"     "X025"      "X025A"     "X025B"    
## [1326] "X025C"     "X025CS"    "X025CSWVS" "X025LIT"   "X025R"    
## [1331] "X026"      "X027"      "X028"      "X028_01"   "X029"     
## [1336] "X030"      "X031"      "X032"      "X032R"     "X032R_01" 
## [1341] "X033"      "X033R"     "X034"      "X034R"     "X034R_01" 
## [1346] "X035_2"    "X035_3"    "X035_4"    "X036"      "X036A"    
## [1351] "X036B"     "X036C"     "X036D"     "X037"      "X037_01"  
## [1356] "X037_02"   "X038"      "X039"      "X040"      "X041"     
## [1361] "X042_2"    "X042_3"    "X042_4"    "X043"      "X044"     
## [1366] "X045"      "X045B"     "X046"      "X047"      "X047A"    
## [1371] "X047A_01"  "X047B"     "X047B_01"  "X047C"     "X047C_01" 
## [1376] "X047CS"    "X047D"     "X047R"     "X048"      "X048A"    
## [1381] "X048B"     "X048C"     "X048D"     "X048E"     "X048F"    
## [1386] "X048G"     "X048WVS"   "X049"      "X049CS"    "X050"     
## [1391] "X051"      "X052"      "X053"      "X054"      "X055"     
## [1396] "Y001"      "Y002"      "Y003"      "Y010"      "Y011"     
## [1401] "Y012"      "Y013"      "Y014"      "Y020"      "Y021"     
## [1406] "Y022"      "Y023"      "Y024"      "TRADRAT5"  "survself" 
## [1411] "nompais"   "oleada"
summary(wvs.peru[, c(189:249)])
##     A124_01           A124_02           A124_03          A124_04      
##  Min.   :-4.0000   Min.   :0.00000   Min.   :0.0000   Min.   :-4.000  
##  1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:-4.000  
##  Median : 0.0000   Median :0.00000   Median :1.0000   Median : 0.000  
##  Mean   :-0.4736   Mean   :0.09351   Mean   :0.5527   Mean   :-1.822  
##  3rd Qu.: 1.0000   3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.: 0.000  
##  Max.   : 1.0000   Max.   :1.00000   Max.   :1.0000   Max.   : 1.000  
##     A124_05          A124_06           A124_07         A124_08      
##  Min.   :-4.000   Min.   :0.00000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:-4.000   1st Qu.:0.00000   1st Qu.:0.000   1st Qu.:1.0000  
##  Median :-4.000   Median :0.00000   Median :0.000   Median :1.0000  
##  Mean   :-2.855   Mean   :0.09277   Mean   :0.306   Mean   :0.7632  
##  3rd Qu.: 0.000   3rd Qu.:0.00000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   : 1.000   Max.   :1.00000   Max.   :1.000   Max.   :1.0000  
##     A124_09          A124_10      A124_11      A124_12          A124_13  
##  Min.   :0.0000   Min.   :-4   Min.   :-4   Min.   :-4.000   Min.   :-4  
##  1st Qu.:0.0000   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4.000   1st Qu.:-4  
##  Median :0.0000   Median :-4   Median :-4   Median :-4.000   Median :-4  
##  Mean   :0.4703   Mean   :-4   Mean   :-4   Mean   :-1.953   Mean   :-4  
##  3rd Qu.:1.0000   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.: 0.000   3rd Qu.:-4  
##  Max.   :1.0000   Max.   :-4   Max.   :-4   Max.   : 1.000   Max.   :-4  
##     A124_14      A124_15      A124_16      A124_17      A124_18      
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4.000  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4.000  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median : 0.000  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-1.807  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.: 0.000  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   : 1.000  
##     A124_19      A124_20      A124_21      A124_22      A124_23  
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median :-4  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4  
##     A124_24      A124_25      A124_26      A124_27      A124_28  
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median :-4  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4  
##     A124_29      A124_30      A124_31      A124_32      A124_33      
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4.000  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4.000  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median :-4.000  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-3.078  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4.000  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   : 1.000  
##     A124_34      A124_35      A124_36      A124_37      A124_38  
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median :-4  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4  
##     A124_39      A124_40      A124_41      A124_42          A124_43      
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4.000   Min.   :-4.000  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4.000   1st Qu.:-4.000  
##  Median :-4   Median :-4   Median :-4   Median :-4.000   Median :-4.000  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-1.963   Mean   :-1.964  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.: 0.000   3rd Qu.: 0.000  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   : 1.000   Max.   : 1.000  
##     A124_44      A124_45      A124_46      A124_47      A124_48  
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median :-4  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4  
##     A124_49      A124_50      A124_51      A124_52      A124_53  
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median :-4  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4  
##     A124_54      A124_55      A124_56      A124_57      A124_58  
##  Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4   Min.   :-4  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4   1st Qu.:-4  
##  Median :-4   Median :-4   Median :-4   Median :-4   Median :-4  
##  Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4   Mean   :-4  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4  
##  Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4   Max.   :-4  
##     A124_59      A124_60      A124_61  
##  Min.   :-4   Min.   :-4   Min.   :-4  
##  1st Qu.:-4   1st Qu.:-4   1st Qu.:-4  
##  Median :-4   Median :-4   Median :-4  
##  Mean   :-4   Mean   :-4   Mean   :-4  
##  3rd Qu.:-4   3rd Qu.:-4   3rd Qu.:-4  
##  Max.   :-4   Max.   :-4   Max.   :-4

Las variables a utilizar serán:

A124_01 : Gente con antecedentes criminales A124_02 : Gente de raza diferente A124_03 : Gente que toma mucho alcohol A124_06 : Inmigrantes A124_07 : Gente que tiene SIDA A124_08 : Drogadictos A124_09 : Homosexuales

Paso 1: Marcar los valores perdidos en los casos que corresponda:

wvs.peru$a124.1.r <- wvs.peru$A124_01
wvs.peru$a124.1.r[wvs.peru$a124.1.r < 0] <- NA

Paso 2: Calcular el índice

wvs.peru$tolera <- wvs.peru$a124.1.r + wvs.peru$A124_02 + wvs.peru$A124_03 +
  wvs.peru$A124_06 + wvs.peru$A124_07 + wvs.peru$A124_08 + wvs.peru$A124_09 

table(wvs.peru$tolera)
## 
##   0   1   2   3   4   5   6   7 
## 391 666 850 899 732 496 118  60

Vamos a acondicional las variables para el análisis: recodificando y/o etiquetando los valores; asignando los Missing Values (NA)

# Sexo del entrevistado
wvs.peru$sex <- as.factor(wvs.peru$X001)
levels(wvs.peru$sex) <- c("Masculino", "Femenino")

# Grupos de edad
wvs.peru$gedad <- as.factor(wvs.peru$X003R2)
levels(wvs.peru$gedad) <- c("15 a 29", "30 a 49", "50 a más")

# Importancia de la religión
wvs.peru$a006r <- wvs.peru$A006
wvs.peru$a006r[wvs.peru$a006r < 0] <- NA
wvs.peru$a006r <- factor(wvs.peru$a006r)
levels(wvs.peru$a006r) <- c("Muy importante", "Algo importante", 
                            "Poco importante", "Nada importante")

Tolerancia según oleada

tol.1 <- summaryBy(tolera~oleada, data = wvs.peru,
          FUN = function(x) {c(Mediana = median(x, na.rm=T), 
                               Media = mean(x, na.rm=T),
                               Desv.Est = sd(x, na.rm=T))})
tol.1
##      oleada tolera.Mediana tolera.Media tolera.Desv.Est
## 1 1995-1998              3     3.049546        1.667637
## 2 1999-2004              3     2.707528        1.727543
## 3 2005-2009              2     2.561333        1.530076
## 4 2010-2014             NA          NaN              NA

Gráfico de cajas:

library(ggplot2)
ggplot(subset(wvs.peru, oleada=="2005-2009"), aes(x=gedad, y=tolera)) +
  geom_boxplot()

ggplot(wvs.peru, aes(x=gedad, y=tolera, fill=oleada)) + 
  geom_boxplot() + scale_fill_manual(values = c("#FFFFFF", "#CCCCCC", "#999999")) +
  xlab("Grupo de Edad") + ylab("Índice de tolerancia") +
  ggtitle("Encuesta Mundial de Valores: Índice de Tolerancia, según\n Grupos de Edad, por Oleada de la Encuesta") +
  theme_bw()
## Warning: Removed 1210 rows containing non-finite values (stat_boxplot).