Using devices such as Jawbone Up, Nike FuelBand and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because the are tech geeks. One thing that people regularly do is quantify how much of a particular acitvity they do, but they rarely quantify how well they do it.
In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).
The data has 5 classes to classify, each one represents a manner of doing the exercise, one is the correct way and the other four are wrong ways:
This work was first developed in the paper:
Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human ’13) . Stuttgart, Germany: ACM SIGCHI, 2013.
The research group generously offers the training and testing data respectivally in the following links:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
Predict the manner in which they did the exercise, this the “classe” variable in the training set
# Set working directory
setwd(Sys.getenv("WDIR_PRACTICALMACHINELEARNING"))
# Load required packages
if ( !require(caret)){
install.packages("caret", dependencies = T)
require(caret)
}
set.seed(123456)
# URLs to download train and test files
train.url = 'https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv'
test.url = 'https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv'
# Create data directory if it not exists
if (!file.exists("./data")) {
dir.create("./data")
}
# Set the filenames to the data sources
train.file = "./data/pml-training.csv"
test.file = "./data/pml-testing.csv"
# Download data
if (!file.exists(train.file)) {
download.file(train.url, destfile=train.file)
}
if (!file.exists(test.file)) {
download.file(test.url, destfile=test.file)
}
# Load the data into two data frames
train = read.csv(file=train.file, stringsAsFactors = F, na.strings=c("NA", "NULL",'', ' '))
test = read.csv(file=test.file, stringsAsFactors = F, na.strings=c("NA", "NULL",'', ' '))
Examining the dataset dimensions.
dim(train)
## [1] 19622 160
dim(test)
## [1] 20 160
The trainset contains 19622 rows and 160 variables, and the testset contains 20 rows and 160 variables. Now, let’s do some exploration in the dataset, checking the variables type and its first values.
str(train)
## 'data.frame': 19622 obs. of 160 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user_name : chr "carlitos" "carlitos" "carlitos" "carlitos" ...
## $ raw_timestamp_part_1 : int 1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
## $ raw_timestamp_part_2 : int 788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
## $ cvtd_timestamp : chr "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" ...
## $ new_window : chr "no" "no" "no" "no" ...
## $ num_window : int 11 11 11 12 12 12 12 12 12 12 ...
## $ roll_belt : num 1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
## $ pitch_belt : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
## $ yaw_belt : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total_accel_belt : int 3 3 3 3 3 3 3 3 3 3 ...
## $ kurtosis_roll_belt : chr NA NA NA NA ...
## $ kurtosis_picth_belt : chr NA NA NA NA ...
## $ kurtosis_yaw_belt : chr NA NA NA NA ...
## $ skewness_roll_belt : chr NA NA NA NA ...
## $ skewness_roll_belt.1 : chr NA NA NA NA ...
## $ skewness_yaw_belt : chr NA NA NA NA ...
## $ max_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_belt : chr NA NA NA NA ...
## $ min_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_belt : chr NA NA NA NA ...
## $ amplitude_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_belt : chr NA NA NA NA ...
## $ var_total_accel_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_belt_x : num 0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
## $ gyros_belt_y : num 0 0 0 0 0.02 0 0 0 0 0 ...
## $ gyros_belt_z : num -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
## $ accel_belt_x : int -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y : int 4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z : int 22 22 23 21 24 21 21 21 24 22 ...
## $ magnet_belt_x : int -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
## $ magnet_belt_y : int 599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z : int -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
## $ roll_arm : num -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
## $ pitch_arm : num 22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ yaw_arm : num -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
## $ total_accel_arm : int 34 34 34 34 34 34 34 34 34 34 ...
## $ var_accel_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_arm_x : num 0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
## $ gyros_arm_y : num 0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
## $ gyros_arm_z : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
## $ accel_arm_x : int -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
## $ accel_arm_y : int 109 110 110 111 111 111 111 111 109 110 ...
## $ accel_arm_z : int -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
## $ magnet_arm_x : int -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
## $ magnet_arm_y : int 337 337 344 344 337 342 336 338 341 334 ...
## $ magnet_arm_z : int 516 513 513 512 506 513 509 510 518 516 ...
## $ kurtosis_roll_arm : chr NA NA NA NA ...
## $ kurtosis_picth_arm : chr NA NA NA NA ...
## $ kurtosis_yaw_arm : chr NA NA NA NA ...
## $ skewness_roll_arm : chr NA NA NA NA ...
## $ skewness_pitch_arm : chr NA NA NA NA ...
## $ skewness_yaw_arm : chr NA NA NA NA ...
## $ max_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ roll_dumbbell : num 13.1 13.1 12.9 13.4 13.4 ...
## $ pitch_dumbbell : num -70.5 -70.6 -70.3 -70.4 -70.4 ...
## $ yaw_dumbbell : num -84.9 -84.7 -85.1 -84.9 -84.9 ...
## $ kurtosis_roll_dumbbell : chr NA NA NA NA ...
## $ kurtosis_picth_dumbbell : chr NA NA NA NA ...
## $ kurtosis_yaw_dumbbell : chr NA NA NA NA ...
## $ skewness_roll_dumbbell : chr NA NA NA NA ...
## $ skewness_pitch_dumbbell : chr NA NA NA NA ...
## $ skewness_yaw_dumbbell : chr NA NA NA NA ...
## $ max_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_dumbbell : chr NA NA NA NA ...
## $ min_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_dumbbell : chr NA NA NA NA ...
## $ amplitude_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## [list output truncated]
The seven first columns represent problem IDs and timestamps, the outcome target is named as classe. Apparently there are many variables with predominance of missing values, NA, this condition will be verified later.
The first procedure is to remove the first seven columns, because they only represent IDs and timestamps, and the relation with the classe outcome is no time-dependent.
train.tidy = train[, -(1:7)]
Secondly, i remove variables that contains a distribution of more or equal than 50% of missing values.
NA.predominance = colSums(is.na(train.tidy))/nrow(train.tidy)
NA.predominance = (NA.predominance >= 0.5)
train.tidy = train.tidy[, !(NA.predominance)]
Third procedure, i remove variables with Near Zero Variance, they mostly has few changes into the population, therefore low influence in the outcome.
nzv = nearZeroVar(train.tidy)
# print the number of chosen variables as near zero variance
print(length(nzv))
## [1] 0
As shown, no column variable has near zero variance, so there is no cut-off here.
The tidy train set at the end of the cleaning process has a reduced dimension:
dim(train.tidy)
## [1] 19622 46
Now it remains only 46 of the initial 160 variable columns.
Prior to any modelling, i split the current train.tidy dataset into a training and a validation (CV) set, the CV set allows to verify the performance of multiple models and choose the best one.
inTrain = createDataPartition(y=train.tidy$classe, p=.75, list=F)
training = train.tidy[inTrain,]
validation = train.tidy[-inTrain,]
I am going to try tree modelling techniques: Random Forest, Gradient Boosting Machine and K-Nearest Neighbors. From these, i choose the best model, testing them in the validation set. I also save the models after the training phase.
# Create the models storage directory
if (!file.exists("./models")) {
dir.create("./models")
}
I apply the Random Forest to model the data, the same method was used by the reseach group data owner, and as they announced the choice is because of the characteristic noise in the sensor data. Random Forest is good for fit non-linear data and avoid overfitting.
rf.file = "./models/rf.fit.rda"
if (!file.exists(rf.file)){
rf.fit = train(classe ~ ., method="rf", data=training, trControl=trainControl(method="oob"), ntree=100, importance=T)
save(rf.fit, file=rf.file)
}else{
load(rf.file)
}
rf.validation = predict(rf.fit, newdata=validation)
rf.acc = confusionMatrix(validation$classe, rf.validation)$overall[1]
It is possible check the most important features discovered by Random Forest method as shown bellow.
par(ps=7)
varImpPlot(rf.fit$finalModel)
The GBM method tries to find an optimal linear combination of trees for a given data. This method usually gives a better accuracy with less trees than Random Forest, nevertheless they’re more sucescitable to overfit the data.
gradbm.file = "./models/gradbm.fit.rda"
if (!file.exists(gradbm.file)){
gradbm.fit = train(classe ~ ., method="gbm", data=training)
save(gradbm.fit, file=gradbm.file)
}else{
load(gradbm.file)
}
gradbm.validation = predict(gradbm.fit, newdata=validation)
gradbm.acc = confusionMatrix(validation$classe, gradbm.validation)$overall[1]
This method computes conditional probability of a class j for given data based on the average of the k nearest neighbors of the same class. Higher k increases the variance of the estimated function, hence the chance of overfitting the data. For this case, i use the default k value of 5 as documented in the Caret package.
knn.file = "./models/knn.fit.rda"
if (!file.exists(knn.file)){
knn.fit = train(classe ~ ., method="gbm", data=training)
save(knn.fit, file=knn.file)
}else{
load(knn.file)
}
knn.validation = predict(knn.fit, newdata=validation)
knn.acc = confusionMatrix(validation$classe, knn.validation)$overall[1]
accuracies = data.frame(rf.acc, gradbm.acc, knn.acc)
print(accuracies)
## rf.acc gradbm.acc knn.acc
## Accuracy 0.9949021 0.9584013 0.9584013
All the tree models present a good perfomance, and could be choosen as the final model, however the Random Forest one got the best accuracy in the validation set with almost 99.5%, hence it will be the final model.
finalModel = rf.fit$finalModel
The out-of-sample error is:
oos.error = 1-accuracies$rf.acc[1]
names(oos.error) <- "out-of-sample error"
print(oos.error)
## out-of-sample error
## 0.005097879
To predict the test case, i exclude the unnecessary columns, and also preprocess the data - center and scale - as did with the train.tidy.
test.tidy <- test[, which(names(test) %in% names(train.tidy))]
#preObj <- preProcess(test.tidy, method=c("center", "scale"))
#test.tidy <- predict(preObj, test.tidy)
test.predictions = predict(finalModel, newdata=test.tidy)
print(test.predictions)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E