Optimal string matching example

In this example, we match up two vectors of strings in an optimal way using the stringdist package. This is a common task when working with sociological data at the country-level or for lower administrative divisions such as US states.

First we load some libraries:

# libs --------------------------------------------------------------------
library(pacman)
p_load(stringdist, reshape2, dplyr)

Then we make up some example data. I’ve picked five countries that have names that usually differ somewhat between Danish and English, sometimes not at all, and sometimes a lot.

# data --------------------------------------------------------------------
#EN names
EN = c("Denmark", "Norway", "USA", "Russia", "Germany")
#DA names
DA = c("Danmark", "Norge", "USA", "Rusland", "Tyskland")

Next we calculate the distances between strings across vectors and reshape the data a bit:

# distances ----------------------------------------------------------------
#matrix
dst = stringdist::stringdistmatrix(EN, DA)
#names
rownames(dst) = EN; colnames(dst) = DA
dst
##         Danmark Norge USA Rusland Tyskland
## Denmark       1     7   7       6        7
## Norway        6     3   6       6        7
## USA           7     5   0       7        8
## Russia        7     6   6       4        6
## Germany       5     6   7       5        6
#conver to 2-column data.frame
dst_df = melt(dst, c("EN", "DA"))
dst_df
##         EN       DA value
## 1  Denmark  Danmark     1
## 2   Norway  Danmark     6
## 3      USA  Danmark     7
## 4   Russia  Danmark     7
## 5  Germany  Danmark     5
## 6  Denmark    Norge     7
## 7   Norway    Norge     3
## 8      USA    Norge     5
## 9   Russia    Norge     6
## 10 Germany    Norge     6
## 11 Denmark      USA     7
## 12  Norway      USA     6
## 13     USA      USA     0
## 14  Russia      USA     6
## 15 Germany      USA     7
## 16 Denmark  Rusland     6
## 17  Norway  Rusland     6
## 18     USA  Rusland     7
## 19  Russia  Rusland     4
## 20 Germany  Rusland     5
## 21 Denmark Tyskland     7
## 22  Norway Tyskland     7
## 23     USA Tyskland     8
## 24  Russia Tyskland     6
## 25 Germany Tyskland     6
#sort
dst_df = dplyr::arrange(dst_df, value)
dst_df
##         EN       DA value
## 1      USA      USA     0
## 2  Denmark  Danmark     1
## 3   Norway    Norge     3
## 4   Russia  Rusland     4
## 5  Germany  Danmark     5
## 6      USA    Norge     5
## 7  Germany  Rusland     5
## 8   Norway  Danmark     6
## 9   Russia    Norge     6
## 10 Germany    Norge     6
## 11  Norway      USA     6
## 12  Russia      USA     6
## 13 Denmark  Rusland     6
## 14  Norway  Rusland     6
## 15  Russia Tyskland     6
## 16 Germany Tyskland     6
## 17     USA  Danmark     7
## 18  Russia  Danmark     7
## 19 Denmark    Norge     7
## 20 Denmark      USA     7
## 21 Germany      USA     7
## 22     USA  Rusland     7
## 23 Denmark Tyskland     7
## 24  Norway Tyskland     7
## 25     USA Tyskland     8
#save copy
dst_df_orig = dst_df

Finally, we loop around this object and pick the best matches one by one:

# match -------------------------------------------------------------------
#storing best matches
best_matches = matrix(nrow=0, ncol=3)

#keep matching and removing pairs until we run out of data
while (nrow(dst_df) > 0) {
  #top value is always the best match because we sorted the data initially
  best_matches = rbind(best_matches, dst_df[1, ])
  
  #remove rows with the same names
  #i.e. keep only those that have non-identical names in both columns to the ones we saved
  dst_df = dplyr::filter(dst_df, (!dst_df[1, 1] == dst_df[, 1]) & (!dst_df[1, 2] == dst_df[, 2]))
}

#view matches
best_matches
##        EN       DA value
## 1     USA      USA     0
## 2 Denmark  Danmark     1
## 3  Norway    Norge     3
## 4  Russia  Rusland     4
## 5 Germany Tyskland     6

As can be seen, all the pairs were matched up correctly. Even Germany which has a totally dissimilar name to the Danish one (which is related to the German and Dutch names: Deutschland, Duitsland).

One can modify this setup so that it stops when distances becomes too large, like the join functions in the fuzzyjoin package. One can also use other string distance measures. Here we used the default one from stringdist package, but it has a number of other ones that may be more suitable.