library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
library(gcookbook)
## Warning: package 'gcookbook' was built under R version 3.2.5
library(gcookbook)
ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity")
ggplot(BOD, aes(x=Time, y=demand)) + geom_bar(stat="identity")
ggplot(BOD, aes(x=factor(Time), y=demand)) + geom_bar(stat="identity")
ggplot(pg_mean, aes(x=group, y=weight)) +
geom_bar(stat="identity", fill="lightblue", colour="black")
library(ggplot2)
library(gcookbook)
cabbage_exp
## Cultivar Date Weight sd n se
## 1 c39 d16 3.18 0.9566144 10 0.30250803
## 2 c39 d20 2.80 0.2788867 10 0.08819171
## 3 c39 d21 2.74 0.9834181 10 0.31098410
## 4 c52 d16 2.26 0.4452215 10 0.14079141
## 5 c52 d20 3.11 0.7908505 10 0.25008887
## 6 c52 d21 1.47 0.2110819 10 0.06674995
#y=weight kept returning "Error: stat_count() must not be used with a y aesthetic."
ggplot(cabbage_exp,aes(x=Date, fill=Cultivar))+ geom_bar(position="dodge")
ce <- cabbage_exp[1:5, ]
ggplot(ce, aes(x=Date, fill=Cultivar)) + geom_bar(position="dodge", colour="black") + scale_fill_brewer(palette="Pastel1")
ggplot(diamonds, aes(x=cut)) + geom_bar()
ggplot(diamonds, aes(x=carat)) + geom_bar()
library(gcookbook)
upc <- subset(uspopchange, rank(Change)>40)
ggplot(upc, aes(x=Abb, y=Change, fill=Region)) + geom_bar(stat="identity")
ggplot(upc, aes(x=reorder(Abb, Change), y=Change, fill=Region)) +
geom_bar(stat="identity", colour="black") +
scale_fill_manual(values=c("#669933", "#FFCC66")) +
xlab("State")
library(gcookbook)
csub <- subset(climate, Source=="Berkeley" & Year >= 1900)
csub$pos <- csub$Anomaly10y >= 0
ggplot(csub, aes(x=Year, y=Anomaly10y, fill=pos)) +
geom_bar(stat="identity", position="identity")
ggplot(csub, aes(x=Year, y=Anomaly10y, fill=pos)) +
geom_bar(stat="identity", position="identity", colour="black", size=0.25) +
scale_fill_manual(values=c("#CCEEFF", "#FFDDDD"), guide=FALSE)
library(gcookbook)
ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity")
ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity", width=0.5)
ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity", width=1)
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +geom_bar(stat="identity", width=0.5, position="dodge")
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +geom_bar(stat="identity", width=0.5, position=position_dodge(0.7))
library(gcookbook)
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +geom_bar(stat="identity",width=.9,position=position_dodge())
library(gcookbook)
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +geom_bar(stat="identity",width=.2,position=position_dodge(.7))
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +geom_bar(stat="identity")+guides(fill=guide_legend(reverse=TRUE))
library(plyr)
## Warning: package 'plyr' was built under R version 3.2.5
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar, order=desc(Cultivar)))+geom_bar(stat="identity")
library(gcookbook)
library(plyr)
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar,order=desc(Weight))) +geom_bar(stat="identity",colour="black")+guides(fill=guide_legend(reverse=TRUE))+scale_fill_brewer(palette="Pastel1")
ce <- ddply(cabbage_exp, "Date", transform,percent_weight = Weight / sum(Weight) * 100)
ggplot(ce, aes(x=Date, y=percent_weight, fill=Cultivar)) +geom_bar(stat="identity")
ggplot(ce,aes(x=Date,y=percent_weight,fill=Cultivar))+geom_bar(stat="identity",colour="black")+guides(fill=guide_legend(reverse=TRUE))+scale_fill_brewer(palette="Pastel1")
library(gcookbook)
ggplot(cabbage_exp, aes(x=interaction(Date, Cultivar), y=Weight)) +
geom_bar(stat="identity") +
geom_text(aes(label=Weight), vjust=1.5, colour="white")
ggplot(cabbage_exp, aes(x=interaction(Date, Cultivar), y=Weight)) +
geom_bar(stat="identity") +
geom_text(aes(label=Weight), vjust=-0.2)
ggplot(cabbage_exp, aes(x=interaction(Date, Cultivar), y=Weight))+geom_bar(stat="identity")+geom_text(aes(label=Weight), vjust=-0.2)+ylim(0, max(cabbage_exp$Weight) * 1.05)
ggplot(cabbage_exp, aes(x=interaction(Date, Cultivar), y=Weight)) + geom_bar(stat="identity")+geom_text(aes(y=Weight+0.1, label=Weight))
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +geom_bar(stat="identity", position="dodge") +geom_text(aes(label=Weight), vjust=1.5, colour="white",
position=position_dodge(.9), size=3)
library(plyr)
ce <- arrange(cabbage_exp, Date, Cultivar)
ce <- ddply(ce, "Date", transform, label_y=cumsum(Weight))
ggplot(ce, aes(x=Date, y=Weight, fill=Cultivar)) +geom_bar(stat="identity") +geom_text(aes(y=label_y, label=Weight), vjust=1.5, colour="white")
ggplot(ce,aes(x=Date,y=Weight,fill=Cultivar))+geom_bar(stat="identity",colour="black")+geom_text(aes(y=label_y,label=paste(format(Weight,nsmall=2),"kg")),size=4,vjust=6)+guides(fill=guide_legend(reverse=TRUE))+scale_fill_brewer(palette="Pastel1")
library(gcookbook)
tophit <- tophitters2001[1:25, ]
ggplot(tophit, aes(x=avg, y=name)) + geom_point()
ggplot(tophit, aes(x=avg, y=reorder(name, avg))) +
geom_point(size=6) +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.major.y = element_line(colour="grey60", linetype="dashed"))
ggplot(tophit, aes(x=reorder(name, avg), y=avg)) +
geom_point(size=6) +
theme_bw() +
theme(axis.text.x = element_text(angle=60, hjust=1),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_line(colour="grey60", linetype="dashed"))
nameorder <- tophit$name[order(tophit$lg, tophit$avg)]
tophit$name <- factor(tophit$name, levels=nameorder)
ggplot(tophit, aes(x=avg,y=name))+geom_segment(aes(yend=name), xend=0, colour="grey50")+geom_point(size=3, aes(colour=lg)) +scale_colour_brewer(palette="Set1", limits=c("NL","AL")) +theme_bw()+theme(panel.grid.major.y = element_blank(),legend.position=c(1,0.55),legend.justification=c(1, 0.5))
ggplot(tophit, aes(x=avg,y=name))+geom_segment(aes(yend=name), xend=0, colour="grey50")+geom_point(size=3,aes(colour=lg))+scale_colour_brewer(palette="Set1", limits=c("NL","AL"),guide=FALSE)+theme_bw()+theme(panel.grid.major.y = element_blank())+facet_grid(lg~.,scales="free_y", space="free_y")
Create three informative graphs that demonstrate the skills you have learned in this chapter. Minimally, at least one graph should have each of the following properties. Use one or more of the listed datasets to create your graphs.
Properties
Datasets
library(ggplot2)
library(plyr)
#Basic Bar Plot, Bar Plot Using Counts, Labels for Bar Plots
Executions <- read.csv("C:\\Users\\mondude\\AppData\\Local\\Temp\\RtmpkT0Uef\\data11705f1b160f")
ggplot(Executions,aes(x=Region,y=Death.Row.Prisoners))+geom_bar(stat="identity")+geom_text(aes(label=Death.Row.Prisoners,vjust=-.2))
## Warning: Removed 18 rows containing missing values (position_stack).
## Warning: Removed 18 rows containing missing values (geom_text).
#Proportional Stacked Bar Plot, Legend, Colored Bars
Executions <- read.csv("C:\\Users\\mondude\\AppData\\Local\\Temp\\RtmpkT0Uef\\data11705f1b160f")
Ex<-ddply(Executions, "Region", transform,percent_executed = Ex.Since.1976 / sum(Ex.Since.1976) * 100)
ggplot(Ex, aes(x=Region, y=percent_executed, fill=State)) +geom_bar(stat="identity",colour="black")
#Cleveland Dot Plot
Executions[, c("State", "Region", "Ex.Pre.1976")]
## State Region Ex.Pre.1976
## 1 Alabama South 708
## 2 Alaska West 12
## 3 Arizona West 104
## 4 Arkansas South 478
## 5 California West 709
## 6 Colorado West 101
## 7 Connecticut Northeast 126
## 8 Delaware Northeast 62
## 9 District of Columbia South 118
## 10 Florida South 314
## 11 Georgia South 950
## 12 Hawaii West 49
## 13 Idaho West 26
## 14 Illinois Midwest 348
## 15 Indiana Midwest 131
## 16 Iowa Midwest 45
## 17 Kansas Midwest 57
## 18 Kentucky South 424
## 19 Louisiana South 632
## 20 Maine Northeast 21
## 21 Maryland South 309
## 22 Massachusetts Northeast 345
## 23 Michigan Midwest 13
## 24 Minnesota Midwest 66
## 25 Mississippi South 351
## 26 Missouri Midwest 285
## 27 Montana West 71
## 28 Nebraska Midwest 34
## 29 Nevada West 61
## 30 New Hampshire Northeast 24
## 31 New Jersey Northeast 361
## 32 New Mexico West 73
## 33 New York Northeast 1130
## 34 North Carolina South 784
## 35 North Dakota Midwest 8
## 36 Ohio Midwest 438
## 37 Oklahoma South 132
## 38 Oregon West 122
## 39 Pennsylvania Northeast 1040
## 40 Rhode Island Northeast 52
## 41 South Carolina South 641
## 42 South Dakota Midwest 15
## 43 Tennessee South 335
## 44 Texas South 755
## 45 Utah West 43
## 46 Vermont Northeast 26
## 47 Virginia South 1277
## 48 Washington West 105
## 49 West Virginia South 155
## 50 Wisconsin Midwest 1
## 51 Wyoming West 22
ggplot(Executions,aes(x=Ex.Pre.1976,y=reorder(State,Ex.Pre.1976)))+geom_point(size=3)+theme_bw() +theme(panel.grid.major.x = element_blank(),panel.grid.minor.x = element_blank(),
panel.grid.major.y = element_line(colour="grey60", linetype="dashed"))
END!