Average annual growth from 2008 to 2014 by species, sorted by median, color coded by rough family.
Does the raw average annual growth look normal for the different species? Not unreasonble to assume they are normally distributed (plots sorted in descending order of sample size).
Given that the observations themselves look normal, suggesting that the true population distribution is normal, we thus assume the sampling distributions of the \(i=1,\ldots,34\) sample means are normal with
Here is a plot of the 34 (assumed normal) sampling distributions
We run RStan to compute posterior means and compare them to the original means.
| term | estimate | std.error |
|---|---|---|
| mu | 0.208 | 0.024 |
| tau | 0.124 | 0.021 |
| species | n | mean | post_mean |
|---|---|---|---|
| Black Walnut | 2 | -0.058 | 0.036 |
| Witch Hazel | 2659 | 0.003 | 0.003 |
| Flowering Dogwood | 298 | 0.054 | 0.054 |
| Musclewood | 3 | 0.058 | 0.063 |
| Autumn Olive | 164 | 0.062 | 0.064 |
| Service Berry | 1324 | 0.091 | 0.091 |
| Choke Cherry | 30 | 0.103 | 0.106 |
| Black Cherry | 7238 | 0.109 | 0.109 |
| Hophornbeam | 233 | 0.161 | 0.161 |
| Bitternut Hickory | 45 | 0.168 | 0.169 |
| American Elm | 539 | 0.221 | 0.221 |
| Red Maple | 5287 | 0.224 | 0.224 |
| Pignut Hickory | 1089 | 0.236 | 0.236 |
| Shagbark Hickory | 143 | 0.241 | 0.240 |
| White Oak | 1090 | 0.246 | 0.246 |
| Sassafras | 503 | 0.259 | 0.258 |
| Black/Northern Pin hybrid | 152 | 0.262 | 0.260 |
| White Ash | 10 | 0.278 | 0.260 |
| American Basswood | 65 | 0.299 | 0.290 |
| American Beech | 60 | 0.320 | 0.312 |
| Black Oak | 933 | 0.321 | 0.318 |
| Black/Red Oak hybrid | 536 | 0.331 | 0.327 |
| Big Tooth Aspen | 31 | 0.366 | 0.349 |
| Red Oak | 149 | 0.382 | 0.377 |
| Sugar Maple | 10 | 0.459 | 0.371 |
n_species <- species_summary$species %>% table() %>% length()
n_sim <- 10000
sim <- NULL
for(i in 1:n_species) {
sim <- bind_rows(
sim,
data_frame(
species = species_summary$species[i],
mean = species_summary$mean[i],
value = rnorm(n_sim, species_summary$post_mean[i], species_summary$SE[i])
)
)
}
ggplot(data=sim, aes(x=value)) +
geom_histogram() +
facet_wrap(~species, scales = "free") +
geom_vline(aes(xintercept = mean), color="red")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.