1. What is the rank of the matrix A?

A=1234-101301-2154-2-3

A=matrix(c(1,-1,0,5,2,0,1,4,3,1,-2,-2,4,3,1,-3), nrow = 4)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
print("Rank of matrix A")
## [1] "Rank of matrix A"
qr(A)$rank
## [1] 4
2. Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?

Maximum possible rank is n. Minimum possible rank is 1.

3. What is the rank of the matrix B?

B=121363242

B=matrix(c(1,3,2,2,6,4,1,3,2), nrow = 3)
B
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2
print("Rank of matrix B")
## [1] "Rank of matrix B"
qr(B)$rank
## [1] 1
4. Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.

As per https://www.youtube.com/watch?v=IdsV0RaC9jM

A=123045006λI =λ100010001=λ000λ000λAλI=123045006-λ000λ000λ=1-λ2304-λ5006-λdet 1-λ2304-λ5006-λ=(1-λ) det( 4-λ506-λ )-0 det (2306-λ) + (0) det (234-λ5) =(1-λ)(4λ)(6λ)so eigenvalues λ=1, λ=4, λ=6For λ=1AλI=1-λ2304-λ5006-λ=023035005First pivot is 0 that means x1 can take any value. Taking value=13x2 +5x3 =0 ( considring 2nd row )5x3=0 ( considring 3rd row )xλ=1=100For λ=4AλI=1-λ2304-λ5006-λ=-323005002-3x1+2x2+3x3=02x3=0i.e. x3 =0considering x2=1x1=23xλ=4=2310For λ=6AλI=1-λ2304-λ5006-λ=-5230-25000-5x1+2x2+3x3=0-2x2+5x3=0Considering x3=1x2=52,x1=85so xλ=6=85521