What percent of a standard normal distribution is found in each region? Be sure to draw a graph.
# Using normalPlot from IS606 package
par(mfrow=c(2,2))
normalPlot(bounds=c(-Inf, -1.35))
normalPlot(bounds=c(1.48, Inf))
normalPlot(bounds=c(-0.4, 1.5))
normalPlot(bounds=c(-2, 2), tails=TRUE)
# a
round(pnorm(-1.35), 4)
## [1] 0.0885
# b
round(pnorm(1.48, lower.tail=FALSE), 4)
## [1] 0.0694
# c
round(pnorm(1.5) - pnorm(-0.4), 4)
## [1] 0.5886
# d
round(pnorm(-2) * 2, 4)
## [1] 0.0455
# using techniques shown in "R for Everyone" by Jared P. Lander
library(ggplot2)
set.seed(60)
#generate line, general dist
randNorm <- rnorm(30000)
randDensity <- dnorm(randNorm)
#generate shaded values
negSeq <- seq(from=min(randNorm), to=-1.35, by=.1)
lessthanNeg <- data.frame(x=negSeq, y=dnorm(negSeq))
#add endpoints
lessthanNeg <- rbind(c(min(randNorm), 0),
lessthanNeg,
c(max(lessthanNeg$x), 0))
#plot
p <- ggplot(data.frame(x=randNorm, y=randDensity)) + aes(x=x,y=y) + geom_line() + labs(x="x", y="Density") + geom_polygon(data=lessthanNeg, aes(x=x, y=y), fill='red')+
ggtitle(expression(phi(x < -1.35) == paste(frac(1, sqrt(2 * pi)), " ", integral(e^(-t^2/2) * dt, -infinity, -1.35), " ", paste('=0.0885'))))
p