Synopsis

1.The tornado is the most harmful event with respect to population health ,this event has resulted 96979 casualties 2.The flood is the most harmful event with respect to economic consequences, this event has resulted 150,000,000,000 dollar economic losses , which include the Property damage and the Crop damage .

library

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)

Data Processing

Download the NOAA storm data notice ,I need comment this part code ,because it will download the file for a long duration

# fileurl <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
# download.file(url = fileurl,destfile = "StormData.csv.bz2" ,method = "curl")
# dir()

load the NOAA storm data in the meomory , check the data type

stormdata <- read.csv("StormData.csv.bz2")

class(stormdata)
## [1] "data.frame"
head(stormdata)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6
str(stormdata)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels ""," Christiansburg",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels ""," CANTON"," TULIA",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","%SD",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","\t","\t\t",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

cleaning the data

accroding to The Exponent code explain , the exponent part of the PROPDMG and CROPDMG need to be transformed . The rule as below

  1. H,h = hundreds = 100

  2. K,k = kilos = thousands = 1,000

  3. M,m = millions = 1,000,000

  4. B,b = billions = 1,000,000,000

  5. (+) = 1

  6. (-) = 0

  7. (?) = 0

  8. black/empty character = 0

  9. numeric 0..8 = 10

check the level again

levels(stormdata$CROPDMGEXP)
## [1] ""  "?" "0" "2" "B" "k" "K" "m" "M"
levels(stormdata$PROPDMGEXP)
##  [1] ""  "-" "?" "+" "0" "1" "2" "3" "4" "5" "6" "7" "8" "B" "h" "H" "K"
## [18] "m" "M"

check the null

sum(is.null(stormdata$EVTYPE))
## [1] 0
sum(is.null(stormdata$FATALITIES))
## [1] 0
sum(is.null(stormdata$INJURIES))
## [1] 0
sum(is.null(stormdata$PROPDMG))
## [1] 0
sum(is.null(stormdata$CROPDMG))
## [1] 0
sum(is.null(stormdata$PROPDMGEXP))
## [1] 0
sum(is.null(stormdata$CROPDMGEXP))
## [1] 0

transform the PROPDMGEXP

stormdata$PROPDMGEXP[is.null(stormdata$PROPDMGEXP)] <- 0
stormdata$PROPDMGEXP <- gsub("[0-8]",10,stormdata$PROPDMGEXP)
stormdata$PROPDMGEXP <- gsub(" ",0,stormdata$PROPDMGEXP)
stormdata$PROPDMGEXP <- gsub("\\?",0,stormdata$PROPDMGEXP)
stormdata$PROPDMGEXP <- gsub("\\-",0,stormdata$PROPDMGEXP)
stormdata$PROPDMGEXP <- gsub("\\+",1,stormdata$PROPDMGEXP)

stormdata$PROPDMGEXP <- gsub("[Hh]",100,stormdata$PROPDMGEXP)

stormdata$PROPDMGEXP <- gsub("[Kk]",1000,stormdata$PROPDMGEXP)

stormdata$PROPDMGEXP <- gsub("[Mm]",1000000,stormdata$PROPDMGEXP)

stormdata$PROPDMGEXP <- gsub("[Bb]",1000000000,stormdata$PROPDMGEXP)


unique(stormdata$PROPDMGEXP)
## [1] "1000"  "1e+06" ""      "1e+09" "1"     "10"    "0"     "100"

transform the CROPDMGEXP

stormdata$CROPDMGEXP[is.null(stormdata$CROPDMGEXP)] <- 0
stormdata$CROPDMGEXP <- gsub("[0-8]",10,stormdata$CROPDMGEXP)
stormdata$CROPDMGEXP <- gsub(" ",0,stormdata$CROPDMGEXP)
stormdata$CROPDMGEXP <- gsub("\\?",0,stormdata$CROPDMGEXP)
stormdata$CROPDMGEXP <- gsub("\\-",0,stormdata$CROPDMGEXP)
stormdata$CROPDMGEXP <- gsub("\\+",1,stormdata$CROPDMGEXP)

stormdata$CROPDMGEXP <- gsub("[Hh]",100,stormdata$CROPDMGEXP)

stormdata$CROPDMGEXP <- gsub("[Kk]",1000,stormdata$CROPDMGEXP)

stormdata$CROPDMGEXP <- gsub("[Mm]",1000000,stormdata$CROPDMGEXP)

stormdata$CROPDMGEXP <- gsub("[Bb]",1000000000,stormdata$CROPDMGEXP)


unique(stormdata$CROPDMGEXP)
## [1] ""      "1e+06" "1000"  "1e+09" "0"     "10"

Transform the data type and check the na for calculation

stormdata$PROPDMGEXP <- as.numeric(stormdata$PROPDMGEXP)
stormdata$CROPDMGEXP <- as.numeric(stormdata$CROPDMGEXP)

sum(is.na(stormdata$CROPDMGEXP))
## [1] 618413
sum(is.na(stormdata$PROPDMGEXP))
## [1] 465934
sum(is.na(stormdata$FATALITIES))
## [1] 0
sum(is.na(stormdata$INJURIES))
## [1] 0
sum(is.na(stormdata$PROPDMG))
## [1] 0
sum(is.na(stormdata$CROPDMG))
## [1] 0
sum(is.na(stormdata$PROPDMGEXP))
## [1] 465934
sum(is.na(stormdata$CROPDMGEXP))
## [1] 618413
stormdata$PROPDMGEXP[is.na(stormdata$PROPDMGEXP)] <- 0

stormdata$CROPDMGEXP[is.na(stormdata$CROPDMGEXP)] <- 0

Results

First , summary the fatalities and the injuries by the event type, and order by the data by the summarized human damage data , get the top human health damage event list , and then ggplot the human damage data .

harmful_to_health <-  summarise(group_by(stormdata,EVTYPE),sum_fatalities = sum(FATALITIES ), sum_injuries = sum(INJURIES),
          sum_health_damage = sum(FATALITIES+INJURIES))

harmful_to_health_orderby_all_damage <- arrange(harmful_to_health,desc(sum_health_damage))

head(harmful_to_health_orderby_all_damage)
## # A tibble: 6 x 4
##           EVTYPE sum_fatalities sum_injuries sum_health_damage
##           <fctr>          <dbl>        <dbl>             <dbl>
## 1        TORNADO           5633        91346             96979
## 2 EXCESSIVE HEAT           1903         6525              8428
## 3      TSTM WIND            504         6957              7461
## 4          FLOOD            470         6789              7259
## 5      LIGHTNING            816         5230              6046
## 6           HEAT            937         2100              3037
head_of_harmful_to_health_orderby_all_damage <- head(harmful_to_health_orderby_all_damage)


g = ggplot(head_of_harmful_to_health_orderby_all_damage, aes(reorder(EVTYPE,desc(sum_health_damage)), sum_health_damage) ,axis()) + geom_bar(stat = "identity") 
g = g+ theme(axis.text.x = element_text(angle = 90, hjust = 1))
g = g+ xlab("Event Type") + ylab("sum of fatalities and injuries ") + ggtitle("The most harmful Event Type with respect to population")
print(g)

Secondly , summary the economic loss (include the Property damage and the Crop damage ) by the event type, then order by the data by the summarized economics loss ,get the top damage event list ,finnally , ggplot the data .

economicconsequences <- summarise(group_by(stormdata,EVTYPE),sum_propdmg = sum(PROPDMGEXP*PROPDMG ), sum_cropdmg = sum(CROPDMGEXP*CROPDMG),
                                  sum_economic_damage = sum(PROPDMGEXP*PROPDMG+CROPDMGEXP*CROPDMG))

economicconsequences_orderby_all_damage <- arrange(economicconsequences,desc(sum_economic_damage))

head(economicconsequences_orderby_all_damage)
## # A tibble: 6 x 4
##              EVTYPE  sum_propdmg sum_cropdmg sum_economic_damage
##              <fctr>        <dbl>       <dbl>               <dbl>
## 1             FLOOD 144657709800  5661968450        150319678250
## 2 HURRICANE/TYPHOON  69305840000  2607872800         71913712800
## 3           TORNADO  56937162897   414954710         57352117607
## 4       STORM SURGE  43323536000        5000         43323541000
## 5              HAIL  15732269877  3025954650         18758224527
## 6       FLASH FLOOD  16140815011  1421317100         17562132111
head_of_economicconsequences_orderby_all_damage <- head(economicconsequences_orderby_all_damage)


gg = ggplot(head_of_economicconsequences_orderby_all_damage, aes(reorder(EVTYPE,desc(sum_economic_damage)), sum_economic_damage) ,axis()) + geom_bar(stat = "identity") 
gg = gg + theme(axis.text.x = element_text(angle = 90, hjust = 1))
gg = gg + xlab("Event Type") + ylab("sum of economics damage on PROP and CROP  ") + ggtitle("The most harmful Event Type with respect to economic consequences")
print(gg)