This example will illustrate how to test for differences between survival functions estimated by the Kaplan-Meier product limit estimator. The tests all follow the methods described by Harrington and Fleming (1982) Link.
The first example will use as its outcome variable, the event of a child dying before age 1. The data for this example come from the model.data Demographic and Health Survey for 2012 children’s recode file. This file contains information for all births in the last 5 years prior to the survey.
The second example, we will examine how to calculate the survival function for a longitudinally collected data set. Here I use data from the ECLS-K. Specifically, we will examine the transition into poverty between kindergarten and fifth grade.
#load libraries
library(haven)
library(survival)
library(car)
library(muhaz)
model.dat<-read_dta("C:/Users/ozd504/Google Drive/zzkr62dt/ZZKR62FL.DTA")
In the DHS, they record if a child is dead or alive and the age at death if the child is dead. This can be understood using a series of variables about each child.
If the child is alive at the time of interview, then the variable B5==1, and the age at death is censored.
If the age at death is censored, then the age at the date of interview (censored age at death) is the date of the interview - date of birth (in months).
If the child is dead at the time of interview,then the variable B5!=1, then the age at death in months is the variable B7. Here we code this:
model.dat$death.age<-ifelse(model.dat$b5==1,
((((model.dat$v008))+1900)-(((model.dat$b3))+1900))
,model.dat$b7)
#censoring indicator for death by age 1, in months (12 months)
model.dat$d.event<-ifelse(is.na(model.dat$b7)==T|model.dat$b7>12,0,1)
model.dat$d.eventfac<-factor(model.dat$d.event); levels(model.dat$d.eventfac)<-c("Alive at 1", "Dead by 1")
table(model.dat$d.eventfac)
##
## Alive at 1 Dead by 1
## 5434 534
We will now test for differences in survival by characteristics of the household. First we will examine whether the survival chances are the same for children in relatively high ses (in material terms) households, compared to those in relatively low-ses households.
This is the equvalent of doing a t-test, or Mann-Whitney U test for differences between two groups.
model.dat$highses<-recode(model.dat$v190, recodes ="1:3 = 0; 4:5=1; else=NA")
fit1<-survfit(Surv(death.age, d.event)~highses, data=model.dat)
plot(fit1, ylim=c(.85,1), xlim=c(0,12), col=c(1,2), conf.int=T)
title(main="Survival Function for Infant Mortality", sub="Low vs. High SES Households")
legend("topright", legend = c("Low SES ", "High SES "), col=c(1,2), lty=1)
fit1
## Call: survfit(formula = Surv(death.age, d.event) ~ highses, data = model.dat)
##
## n events median 0.95LCL 0.95UCL
## highses=0 4179 362 NA NA NA
## highses=1 1789 172 NA NA NA
summary(fit1)
## Call: survfit(formula = Surv(death.age, d.event) ~ highses, data = model.dat)
##
## highses=0
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 4179 134 0.968 0.00273 0.963 0.973
## 1 3992 18 0.964 0.00290 0.958 0.969
## 2 3914 28 0.957 0.00316 0.951 0.963
## 3 3808 24 0.951 0.00337 0.944 0.957
## 4 3709 10 0.948 0.00346 0.941 0.955
## 5 3625 15 0.944 0.00359 0.937 0.951
## 6 3520 20 0.939 0.00376 0.931 0.946
## 7 3414 14 0.935 0.00389 0.927 0.943
## 8 3325 21 0.929 0.00407 0.921 0.937
## 9 3238 17 0.924 0.00422 0.916 0.932
## 10 3159 3 0.923 0.00424 0.915 0.932
## 11 3090 10 0.920 0.00433 0.912 0.929
## 12 3015 48 0.906 0.00475 0.896 0.915
##
## highses=1
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 1789 75 0.958 0.00474 0.949 0.967
## 1 1698 8 0.954 0.00498 0.944 0.963
## 2 1659 9 0.948 0.00524 0.938 0.959
## 3 1615 14 0.940 0.00564 0.929 0.951
## 4 1573 15 0.931 0.00604 0.919 0.943
## 5 1536 7 0.927 0.00622 0.915 0.939
## 6 1501 6 0.923 0.00638 0.911 0.936
## 7 1466 4 0.921 0.00648 0.908 0.934
## 8 1430 5 0.918 0.00662 0.905 0.931
## 9 1383 6 0.914 0.00679 0.900 0.927
## 10 1348 2 0.912 0.00684 0.899 0.926
## 11 1315 3 0.910 0.00693 0.897 0.924
## 12 1288 18 0.897 0.00746 0.883 0.912
Gives us the basic survival plot.
Next we will use survtest() to test for differences between the two or more groups. The survdiff() function performs the log-rank test to compare the survival patterns of two or more groups.
#two group compairison
survdiff(Surv(death.age, d.event)~highses, data=model.dat)
## Call:
## survdiff(formula = Surv(death.age, d.event) ~ highses, data = model.dat)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## highses=0 4179 362 374 0.401 1.37
## highses=1 1789 172 160 0.940 1.37
##
## Chisq= 1.4 on 1 degrees of freedom, p= 0.243
In this case, we see no difference in survival status based on household SES.
How about rural vs urban residence?
table(model.dat$v025)
##
## 1 2
## 1830 4138
model.dat$rural<-recode(model.dat$v025, recodes ="2 = 1; 1=0; else=NA")
fit2<-survfit(Surv(death.age, d.event)~rural, data=model.dat, conf.type = "log")
plot(fit2,ylim=c(.85, 1), xlim=c(0,12), col=c(1,2), conf.int=T)
title(main="Survival Function for Infant Mortality", sub="Rural vs Urban Residence")
legend("topright", legend = c("Urban","Rural" ), col=c(1,2), lty=1)
fit2
## Call: survfit(formula = Surv(death.age, d.event) ~ rural, data = model.dat,
## conf.type = "log")
##
## n events median 0.95LCL 0.95UCL
## rural=0 1830 188 NA NA NA
## rural=1 4138 346 NA NA NA
summary(fit2)
## Call: survfit(formula = Surv(death.age, d.event) ~ rural, data = model.dat,
## conf.type = "log")
##
## rural=0
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 1830 79 0.957 0.00475 0.948 0.966
## 1 1731 11 0.951 0.00506 0.941 0.961
## 2 1694 8 0.946 0.00528 0.936 0.957
## 3 1648 14 0.938 0.00566 0.927 0.949
## 4 1600 10 0.932 0.00592 0.921 0.944
## 5 1571 9 0.927 0.00615 0.915 0.939
## 6 1530 9 0.922 0.00637 0.909 0.934
## 7 1498 5 0.918 0.00650 0.906 0.931
## 8 1456 7 0.914 0.00668 0.901 0.927
## 9 1413 6 0.910 0.00683 0.897 0.924
## 10 1381 2 0.909 0.00689 0.895 0.922
## 11 1345 4 0.906 0.00700 0.893 0.920
## 12 1313 24 0.890 0.00764 0.875 0.905
##
## rural=1
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 4138 130 0.969 0.00271 0.963 0.974
## 1 3959 15 0.965 0.00286 0.959 0.971
## 2 3879 29 0.958 0.00314 0.952 0.964
## 3 3775 24 0.952 0.00336 0.945 0.958
## 4 3682 15 0.948 0.00349 0.941 0.955
## 5 3590 13 0.944 0.00360 0.937 0.951
## 6 3491 17 0.940 0.00375 0.932 0.947
## 7 3382 13 0.936 0.00387 0.929 0.944
## 8 3299 19 0.931 0.00404 0.923 0.939
## 9 3208 17 0.926 0.00419 0.918 0.934
## 10 3126 3 0.925 0.00422 0.917 0.933
## 11 3060 9 0.922 0.00430 0.914 0.931
## 12 2990 42 0.909 0.00469 0.900 0.918
#Two- sample test
survdiff(Surv(death.age, d.event)~rural, data=model.dat)
## Call:
## survdiff(formula = Surv(death.age, d.event) ~ rural, data = model.dat)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## rural=0 1830 188 163 3.79 5.55
## rural=1 4138 346 371 1.67 5.55
##
## Chisq= 5.6 on 1 degrees of freedom, p= 0.0184
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr
## Loading required package: magrittr
ggsurvplot(fit2,conf.int = T, risk.table = F, title = "Survivorship Function for Infant Mortality", xlab = "Time in Months", xlim = c(0,12), ylim=c(.8, 1))
Which shows a statistically significant difference in survival between rural and urban children, with rural children showing lower survivorship at all ages.
We can also compare the 95% survival point for rural and urban residents
quantile(fit2, probs=.05)
## $quantile
## 5
## rural=0 2
## rural=1 4
##
## $lower
## 5
## rural=0 0
## rural=1 3
##
## $upper
## 5
## rural=0 3
## rural=1 6
We can also calculate the hazard function for each group using the kphaz.fit function in the muhaz library.
haz2<-kphaz.fit(model.dat$death.age, model.dat$d.event, model.dat$rural)
haz2
## $time
## [1] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 0.5 1.5
## [15] 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5
##
## $haz
## [1] 0.0064084477 0.0047764602 0.0086460188 0.0063018400 0.0058154299
## [6] 0.0059338979 0.0033648177 0.0048901211 0.0042929999 0.0014588521
## [11] 0.0030184080 0.0185979202 0.0038314014 0.0075716497 0.0064378810
## [16] 0.0041197145 0.0036742403 0.0049398949 0.0038930677 0.0058337248
## [21] 0.0053636408 0.0009670736 0.0029830591 0.0143373352
##
## $var
## [1] 3.733606e-06 2.852025e-06 5.339922e-06 3.971474e-06 3.757836e-06
## [6] 3.912526e-06 2.264454e-06 3.416455e-06 3.071735e-06 1.064171e-06
## [11] 2.277779e-06 1.441308e-05 9.786715e-07 1.976995e-06 1.727037e-06
## [16] 1.131544e-06 1.038557e-06 1.435586e-06 1.165912e-06 1.791334e-06
## [21] 1.692389e-06 3.117631e-07 9.887982e-07 4.894885e-06
##
## $strata
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
plot(y=haz2$haz[1:12], x=haz2$time[1:12], col=1, lty=1, type="s")
lines(y=haz2$haz[13:24], x=haz2$time[13:24], col=2, lty=1, type="s")
This may be suggestive that children in urban areas may live in poorer environmental conditions.
Next we illustrate a k-sample test. This would be the equivalent of the ANOVA if we were doing ordinary linear models.
In this example, I use the v024 variable, which corresponds to the region of residence in this data. Effectively we are testing for differences in risk of infant mortality by region.
model.dat
## # A tibble: 5,968 x 945
## caseid midx v000 v001 v002 v003 v004 v005 v006 v007
## <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 2 1 ZZ6 1 1 2 1 1057703 6 2015
## 2 1 1 2 2 ZZ6 1 1 2 1 1057703 6 2015
## 3 1 3 2 1 ZZ6 1 3 2 1 1057703 6 2015
## 4 1 4 3 1 ZZ6 1 4 3 1 1057703 6 2015
## 5 1 4 3 2 ZZ6 1 4 3 1 1057703 6 2015
## 6 1 5 1 1 ZZ6 1 5 1 1 1057703 6 2015
## 7 1 5 1 2 ZZ6 1 5 1 1 1057703 6 2015
## 8 1 15 1 1 ZZ6 1 15 1 1 1057703 6 2015
## 9 1 15 1 2 ZZ6 1 15 1 1 1057703 6 2015
## 10 1 15 1 3 ZZ6 1 15 1 1 1057703 6 2015
## # ... with 5,958 more rows, and 935 more variables: v008 <dbl>,
## # v009 <dbl>, v010 <dbl>, v011 <dbl>, v012 <dbl>, v013 <dbl+lbl>,
## # v014 <dbl+lbl>, v015 <dbl+lbl>, v016 <dbl>, v017 <dbl>,
## # v018 <dbl+lbl>, v019 <dbl+lbl>, v019a <dbl+lbl>, v020 <dbl+lbl>,
## # v021 <dbl>, v022 <dbl>, v023 <dbl+lbl>, v024 <dbl+lbl>,
## # v025 <dbl+lbl>, v026 <dbl+lbl>, v027 <dbl>, v028 <dbl>, v029 <dbl>,
## # v030 <dbl>, v031 <dbl>, v032 <dbl>, v034 <dbl+lbl>, v040 <dbl>,
## # v042 <dbl+lbl>, v044 <dbl+lbl>, v101 <dbl+lbl>, v102 <dbl+lbl>,
## # v103 <dbl+lbl>, v104 <dbl+lbl>, v105 <dbl+lbl>, v106 <dbl+lbl>,
## # v107 <dbl+lbl>, v113 <dbl+lbl>, v115 <dbl+lbl>, v116 <dbl+lbl>,
## # v119 <dbl+lbl>, v120 <dbl+lbl>, v121 <dbl+lbl>, v122 <dbl+lbl>,
## # v123 <dbl+lbl>, v124 <dbl+lbl>, v125 <dbl+lbl>, v127 <dbl+lbl>,
## # v128 <dbl+lbl>, v129 <dbl+lbl>, v130 <dbl+lbl>, v131 <dbl+lbl>,
## # v133 <dbl+lbl>, v134 <dbl+lbl>, v135 <dbl+lbl>, v136 <dbl>,
## # v137 <dbl>, v138 <dbl>, v139 <dbl+lbl>, v140 <dbl+lbl>,
## # v141 <dbl+lbl>, v149 <dbl+lbl>, v150 <dbl+lbl>, v151 <dbl+lbl>,
## # v152 <dbl+lbl>, v153 <dbl+lbl>, awfactt <dbl>, awfactu <dbl>,
## # awfactr <dbl>, awfacte <dbl>, awfactw <dbl>, v155 <dbl+lbl>,
## # v156 <dbl+lbl>, v157 <dbl+lbl>, v158 <dbl+lbl>, v159 <dbl+lbl>,
## # v160 <dbl+lbl>, v161 <dbl+lbl>, v166 <dbl+lbl>, v167 <dbl+lbl>,
## # v168 <dbl+lbl>, v190 <dbl+lbl>, v191 <dbl>, ml101 <dbl+lbl>,
## # v201 <dbl>, v202 <dbl>, v203 <dbl>, v204 <dbl>, v205 <dbl>,
## # v206 <dbl>, v207 <dbl>, v208 <dbl+lbl>, v209 <dbl+lbl>, v210 <dbl>,
## # v211 <dbl>, v212 <dbl>, v213 <dbl+lbl>, v214 <dbl>, v215 <dbl+lbl>,
## # v216 <dbl+lbl>, ...
table(model.dat$v024, model.dat$d.eventfac)
##
## Alive at 1 Dead by 1
## 1 2229 181
## 2 1435 141
## 3 631 94
## 4 1139 118
fit3<-survfit(Surv(death.age, d.event)~v024, data=model.dat)
fit3
## Call: survfit(formula = Surv(death.age, d.event) ~ v024, data = model.dat)
##
## n events median 0.95LCL 0.95UCL
## v024=1 2410 181 NA NA NA
## v024=2 1576 141 NA NA NA
## v024=3 725 94 NA NA NA
## v024=4 1257 118 NA NA NA
summary(fit3)
## Call: survfit(formula = Surv(death.age, d.event) ~ v024, data = model.dat)
##
## v024=1
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 2410 55 0.977 0.00304 0.971 0.983
## 1 2320 12 0.972 0.00336 0.966 0.979
## 2 2264 17 0.965 0.00377 0.957 0.972
## 3 2195 13 0.959 0.00407 0.951 0.967
## 4 2140 5 0.957 0.00418 0.949 0.965
## 5 2092 9 0.953 0.00438 0.944 0.961
## 6 2036 11 0.948 0.00462 0.939 0.957
## 7 1976 6 0.945 0.00476 0.935 0.954
## 8 1920 12 0.939 0.00502 0.929 0.949
## 9 1860 11 0.933 0.00527 0.923 0.944
## 10 1805 3 0.932 0.00533 0.921 0.942
## 11 1757 2 0.931 0.00538 0.920 0.941
## 12 1713 25 0.917 0.00595 0.905 0.929
##
## v024=2
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 1576 57 0.964 0.00470 0.955 0.973
## 1 1507 7 0.959 0.00498 0.950 0.969
## 2 1485 8 0.954 0.00527 0.944 0.965
## 3 1451 12 0.946 0.00570 0.935 0.958
## 4 1410 8 0.941 0.00598 0.929 0.953
## 5 1377 5 0.938 0.00615 0.926 0.950
## 6 1331 7 0.933 0.00639 0.920 0.945
## 7 1294 2 0.931 0.00646 0.919 0.944
## 8 1267 7 0.926 0.00671 0.913 0.939
## 9 1235 7 0.921 0.00696 0.907 0.934
## 11 1178 1 0.920 0.00700 0.906 0.934
## 12 1152 20 0.904 0.00774 0.889 0.919
##
## v024=3
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 725 48 0.934 0.00923 0.916 0.952
## 1 663 2 0.931 0.00942 0.913 0.950
## 2 650 3 0.927 0.00970 0.908 0.946
## 3 630 10 0.912 0.01060 0.891 0.933
## 4 612 6 0.903 0.01111 0.882 0.925
## 5 600 3 0.899 0.01135 0.877 0.921
## 6 585 5 0.891 0.01176 0.868 0.914
## 7 569 3 0.886 0.01201 0.863 0.910
## 8 549 2 0.883 0.01218 0.859 0.907
## 9 528 1 0.881 0.01227 0.858 0.906
## 10 517 2 0.878 0.01246 0.854 0.903
## 11 504 4 0.871 0.01284 0.846 0.896
## 12 490 5 0.862 0.01331 0.836 0.888
##
## v024=4
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 1257 49 0.961 0.00546 0.950 0.972
## 1 1200 5 0.957 0.00572 0.946 0.968
## 2 1174 9 0.950 0.00618 0.938 0.962
## 3 1147 3 0.947 0.00633 0.935 0.960
## 4 1120 6 0.942 0.00662 0.929 0.955
## 5 1092 5 0.938 0.00687 0.924 0.951
## 6 1069 3 0.935 0.00702 0.922 0.949
## 7 1041 7 0.929 0.00736 0.915 0.943
## 8 1019 5 0.924 0.00760 0.910 0.939
## 9 998 4 0.921 0.00779 0.905 0.936
## 11 966 6 0.915 0.00809 0.899 0.931
## 12 948 16 0.899 0.00882 0.882 0.917
quantile(fit3, probs=.05)
## $quantile
## 5
## v024=1 6
## v024=2 3
## v024=3 0
## v024=4 2
##
## $lower
## 5
## v024=1 4
## v024=2 1
## v024=3 0
## v024=4 1
##
## $upper
## 5
## v024=1 8
## v024=2 5
## v024=3 1
## v024=4 6
ggsurvplot(fit3,conf.int = T, risk.table = F, title = "Survivorship Function for Infant Mortality", xlab = "Time in Months", xlim = c(0,12), ylim=c(.8, 1))
#plot(fit3, ylim=c(.85,1), xlim=c(0,12), col=1:4, conf.int=F)
#title(main="Survival Function for Infant Mortality", sub="Household SES")
#legend("topright", legend = c("Region 1","Region 2", "Region 3", "Region 4" ), col=1:4, lty=1)
#K- sample test
survdiff(Surv(death.age, d.event)~v024, data=model.dat)
## Call:
## survdiff(formula = Surv(death.age, d.event) ~ v024, data = model.dat)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## v024=1 2410 181 215.5 5.52534 9.43344
## v024=2 1576 141 141.9 0.00537 0.00745
## v024=3 725 94 62.9 15.33021 17.70233
## v024=4 1257 118 113.7 0.16401 0.21218
##
## Chisq= 21.4 on 3 degrees of freedom, p= 8.63e-05
Which shows significant variation in survival between regions. The biggest difference we see is between region 3 green) and region 1 (black line) groups.
Lastly, we examine comparing survival across multiple variables, in this case the education of the mother (secedu) and the rural/urban residence rural:
model.dat$secedu<-recode(model.dat$v106, recodes ="2:3 = 1; 0:1=0; else=NA")
table(model.dat$secedu, model.dat$d.eventfac)
##
## Alive at 1 Dead by 1
## 0 4470 430
## 1 964 104
fit4<-survfit(Surv(death.age, d.event)~rural+secedu, data=model.dat)
summary(fit4)
## Call: survfit(formula = Surv(death.age, d.event) ~ rural + secedu,
## data = model.dat)
##
## rural=0, secedu=0
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 1193 52 0.956 0.00591 0.945 0.968
## 1 1129 6 0.951 0.00623 0.939 0.964
## 2 1107 6 0.946 0.00655 0.933 0.959
## 3 1079 5 0.942 0.00680 0.929 0.955
## 4 1054 6 0.936 0.00711 0.923 0.950
## 5 1031 5 0.932 0.00736 0.918 0.946
## 6 1002 4 0.928 0.00756 0.913 0.943
## 7 985 4 0.924 0.00776 0.909 0.940
## 8 964 4 0.921 0.00796 0.905 0.936
## 9 939 4 0.917 0.00817 0.901 0.933
## 10 919 2 0.915 0.00827 0.899 0.931
## 11 896 3 0.912 0.00843 0.895 0.928
## 12 875 21 0.890 0.00948 0.871 0.908
##
## rural=0, secedu=1
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 637 27 0.958 0.00798 0.942 0.973
## 1 602 5 0.950 0.00867 0.933 0.967
## 2 587 2 0.946 0.00894 0.929 0.964
## 3 569 9 0.931 0.01010 0.912 0.951
## 4 546 4 0.925 0.01058 0.904 0.946
## 5 540 4 0.918 0.01104 0.896 0.940
## 6 528 5 0.909 0.01160 0.887 0.932
## 7 513 1 0.907 0.01172 0.885 0.931
## 8 492 3 0.902 0.01207 0.878 0.926
## 9 474 2 0.898 0.01232 0.874 0.922
## 11 449 1 0.896 0.01245 0.872 0.921
## 12 438 3 0.890 0.01286 0.865 0.915
##
## rural=1, secedu=0
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 3707 112 0.970 0.00281 0.964 0.975
## 1 3553 14 0.966 0.00298 0.960 0.972
## 2 3482 28 0.958 0.00330 0.952 0.965
## 3 3388 21 0.952 0.00352 0.945 0.959
## 4 3306 15 0.948 0.00368 0.941 0.955
## 5 3227 12 0.944 0.00380 0.937 0.952
## 6 3144 14 0.940 0.00395 0.932 0.948
## 7 3043 12 0.936 0.00408 0.929 0.945
## 8 2971 16 0.931 0.00424 0.923 0.940
## 9 2893 15 0.927 0.00440 0.918 0.935
## 10 2817 3 0.926 0.00443 0.917 0.934
## 11 2769 6 0.924 0.00450 0.915 0.932
## 12 2711 40 0.910 0.00492 0.900 0.920
##
## rural=1, secedu=1
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 431 18 0.958 0.00964 0.940 0.977
## 1 406 1 0.956 0.00990 0.937 0.975
## 2 397 1 0.953 0.01016 0.934 0.974
## 3 387 3 0.946 0.01094 0.925 0.968
## 5 363 1 0.943 0.01122 0.922 0.966
## 6 347 3 0.935 0.01207 0.912 0.959
## 7 339 1 0.933 0.01234 0.909 0.957
## 8 328 3 0.924 0.01318 0.899 0.950
## 9 315 2 0.918 0.01373 0.892 0.945
## 11 291 3 0.909 0.01464 0.880 0.938
## 12 279 2 0.902 0.01524 0.873 0.933
ggsurvplot(fit4,conf.int = T, risk.table = F, title = "Survivorship Function for Infant Mortality", xlab = "Time in Months", xlim = c(0,12), ylim=c(.8, 1))
#plot(fit4, ylim=c(.85,1), xlim=c(0,12), col=c(1,1,2,2),lty=c(1,2,1,2), conf.int=F)
#title(main="Survival Function for Infant Mortality", sub="Rural/Urban * Mother's Education")
#legend("topright", legend = c("Urban, Low Edu","Urban High Edu ", "Rural, Low Edu","Rural High Edu " ), col=c(1,1,2,2),lty=c(1,2,1,2))
# test
survdiff(Surv(death.age, d.event)~rural+secedu, data=model.dat)
## Call:
## survdiff(formula = Surv(death.age, d.event) ~ rural + secedu,
## data = model.dat)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## rural=0, secedu=0 1193 122 107.1 2.07801 2.64671
## rural=0, secedu=1 637 66 56.1 1.76227 2.00529
## rural=1, secedu=0 3707 308 333.3 1.92685 5.22186
## rural=1, secedu=1 431 38 37.5 0.00632 0.00693
##
## Chisq= 5.9 on 3 degrees of freedom, p= 0.118
Which shows a marginally significant difference between at least two of the groups, in this case, I would say that it’s most likely finding differences between the Urban, low Education and the Rural low education, because there have the higher ratio of observed vs expected.
This example will cover the use of R functions for analyzing complex survey data. Most social and health surveys are not simple random samples of the population, but instead consist of respondents from a complex survey design. These designs often stratify the population based on one or more characteristics, including geography, race, age, etc. In addition the designs can be multi-stage, meaning that initial strata are created, then respondents are sampled from smaller units within those strata. An example would be if a school district was chosen as a sample strata, and then schools were then chosen as the primary sampling units (PSUs) within the district. From this 2 stage design, we could further sample classrooms within the school (3 stage design) or simply sample students (or whatever our unit of interest is).
A second feature of survey data we often want to account for is differential respondent weighting. This means that each respondent is given a weight to represent how common that particular respondent is within the population. This reflects the differenital probability of sampling based on respondent characteristics. As demographers, we are also often interested in making inference for the population, not just the sample, so our results must be generalizable to the population at large. Sample weights are used in the process as well.
When such data are analyzed, we must take into account this nesting structure (sample design) as well as the respondent sample weight in order to make valid estimates of ANY statistical parameter. If we do not account for design, the parameter standard errors will be incorrect, and if we do not account for weighting, the parameters themselves will be incorrect and biased.
In general there are typically three things we need to find in our survey data codebooks: The sample strata identifier, the sample primary sampling unit identifier (often called a cluster identifier) and the respondent survey weight. These will typically have one of these names and should be easily identifiable in the codebook.
Statistical software will have special routines for analyzing these types of data and you must be aware that the diversity of statistical routines that generally exists will be lower for analyzing complex survey data, and some forms of analysis may not be available!
In the DHS Recode manual, the sampling information for the data is found in variables v021 and v022, which are the primary sampling unit (PSU) and sample strata, respectively. The person weight is found in variable v005, and following DHS protocol, this has six implied decimal places, so we must divide it by 1000000, again, following the DHS manual.
library(survey)
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
model.dat$wt<-model.dat$v005/1000000
#create the design: ids == PSU, strata==strata, weights==weights.
options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~v021, strata = ~v022, weights=~wt, data=model.dat)
fit.s<-svykm(Surv(death.age, d.event)~rural, design=des, se=T)
#use svyby to find the %of infants that die before age 1, by rural/urban status
svyby(~d.event, ~rural, des, svymean)
## rural d.event se
## 0 0 0.10760897 0.009765244
## 1 1 0.08655918 0.005201127
#the plotting is a bit more of a challenge, as the survey version of the function isn't as nice
plot(fit.s[[1]], ylim=c(.8,1), xlim=c(0,12),col=1, ci=F )
lines(fit.s[[2]], col=2)
title(main="Survival Function for Infant Mortality", sub="Rural vs Urban Residence")
legend("topright", legend = c("Urban","Rural" ), col=c(1,2), lty=1)
#test statistic
svylogrank(Surv(death.age, d.event)~rural, design=des)
## [[1]]
## score
## [1,] -28.80354 15.1323 -1.903447 0.05698224
##
## [[2]]
## chisq p
## 3.62311066 0.05698224
##
## attr(,"class")
## [1] "svylogrank"
And we see the p-value is larger than assuming random sampling.
In this example, we will examine how to calculate the survival function for a longitudinally collected data set. Here I use data from the ECLS-K. Specifically, we will examine the transition into poverty between kindergarten and third grade.
First we load our data
load("C:/Users/ozd504/Google Drive/classes/dem7223/class17/data/eclsk.Rdata")
names(eclsk)<-tolower(names(eclsk))
#get out only the variables I'm going to use for this example
myvars<-c( "childid","gender", "race", "r1_kage","r4age", "r5age", "r6age", "r7age", "w1povrty","w1povrty","w3povrty", "w5povrty", "w8povrty","wkmomed", "s2_id", "c1_5fp0", "c15fpstr", "c15fppsu")
eclsk<-eclsk[,myvars]
eclsk$age1<-ifelse(eclsk$r1_kage==-9, NA, eclsk$r1_kage/12)
eclsk$age2<-ifelse(eclsk$r4age==-9, NA, eclsk$r4age/12)
#for the later waves, the NCES group the ages into ranges of months, so 1= <105 months, 2=105 to 108 months. So, I fix the age at the midpoint of the interval they give, and make it into years by dividing by 12
eclsk$age3<-recode(eclsk$r5age,recodes="1=105; 2=107; 3=109; 4=112; 5=115; 6=117; -9=NA")/12
eclsk$pov1<-ifelse(eclsk$w1povrty==1,1,0)
eclsk$pov2<-ifelse(eclsk$w3povrty==1,1,0)
eclsk$pov3<-ifelse(eclsk$w5povrty==1,1,0)
#Recode race with white, non Hispanic as reference using dummy vars
eclsk$hisp<-recode (eclsk$race, recodes="3:4=1;-9=NA; else=0")
eclsk$race_rec<-recode (eclsk$race, recodes="1 = 'nhwhite';2='nhblack';3:4='hispanic';5='nhasian'; 6:8='other';-9=NA", as.factor.result = T)
eclsk$male<-recode(eclsk$gender, recodes="1=1; 2=0; -9=NA")
eclsk$mlths<-recode(eclsk$wkmomed, recodes = "1:2=1; 3:9=0; else = NA")
eclsk$mgths<-recode(eclsk$wkmomed, recodes = "1:3=0; 4:9=1; else =NA")
Now, I need to form the transition variable, this is my event variable, and in this case it will be 1 if a child enters poverty between the first wave of the data and the third grade wave, and 0 otherwise.
NOTE I need to remove any children who are already in poverty age wave 1, because they are not at risk of experiencing this particular transition. Again, this is called forming the risk set
eclsk<-subset(eclsk, is.na(pov1)==F&is.na(pov2)==F&is.na(pov3)==F&is.na(age1)==F&is.na(age2)==F&is.na(age3)==F&pov1!=1)
Now we do the entire data set. To analyze data longitudinally, we need to reshape the data from the current “wide” format (repeated measures in columns) to a “long” format (repeated observations in rows). The reshape() function allows us to do this easily. It allows us to specify our repeated measures, time varying covariates as well as time-constant covariates.
e.long<-reshape(eclsk, idvar="childid", varying=list(c("age1","age2"),
c("age2", "age3")),
v.names=c("age_enter", "age_exit"),
times=1:2, direction="long" )
e.long<-e.long[order(e.long$childid, e.long$time),]
e.long$povtran<-NA
e.long$povtran[e.long$pov1==0&e.long$pov2==1&e.long$time==1]<-1
e.long$povtran[e.long$pov2==0&e.long$pov3==1&e.long$time==2]<-1
e.long$povtran[e.long$pov1==0&e.long$pov2==0&e.long$time==1]<-0
e.long$povtran[e.long$pov2==0&e.long$pov3==0&e.long$time==2]<-0
#find which kids failed in earlier time periods and remove them from the second & third period risk set
failed1<-which(is.na(e.long$povtran)==T)
e.long<-e.long[-failed1,]
e.long$age1r<-round(e.long$age_enter, 0)
e.long$age2r<-round(e.long$age_exit, 0)
head(e.long, n=10)
## childid gender race r1_kage r4age r5age r6age r7age w1povrty
## 0001002C.1 0001002C 2 1 77.20 94.73 6 4 4 2
## 0001002C.2 0001002C 2 1 77.20 94.73 6 4 4 2
## 0001007C.1 0001007C 1 1 63.60 81.90 2 2 2 2
## 0001007C.2 0001007C 1 1 63.60 81.90 2 2 2 2
## 0001010C.1 0001010C 2 1 70.63 88.63 4 3 3 2
## 0001010C.2 0001010C 2 1 70.63 88.63 4 3 3 2
## 0002004C.1 0002004C 2 1 65.40 83.73 3 2 2 2
## 0002004C.2 0002004C 2 1 65.40 83.73 3 2 2 2
## 0002006C.1 0002006C 2 1 61.90 80.23 2 2 2 2
## 0002008C.1 0002008C 2 1 70.87 89.20 5 3 3 2
## w1povrty.1 w3povrty w5povrty w8povrty wkmomed s2_id c1_5fp0
## 0001002C.1 2 2 2 2 3 0001 352.35
## 0001002C.2 2 2 2 2 3 0001 352.35
## 0001007C.1 2 2 2 2 6 0001 358.99
## 0001007C.2 2 2 2 2 6 0001 358.99
## 0001010C.1 2 2 2 2 7 0001 352.35
## 0001010C.2 2 2 2 2 7 0001 352.35
## 0002004C.1 2 2 2 2 6 0002 228.05
## 0002004C.2 2 2 2 2 6 0002 228.05
## 0002006C.1 2 1 1 2 -1 0002 287.25
## 0002008C.1 2 2 2 2 4 0002 259.19
## c15fpstr c15fppsu pov1 pov2 pov3 hisp race_rec male mlths mgths
## 0001002C.1 63 1 0 0 0 0 nhwhite 0 0 0
## 0001002C.2 63 1 0 0 0 0 nhwhite 0 0 0
## 0001007C.1 63 1 0 0 0 0 nhwhite 1 0 1
## 0001007C.2 63 1 0 0 0 0 nhwhite 1 0 1
## 0001010C.1 63 1 0 0 0 0 nhwhite 0 0 1
## 0001010C.2 63 1 0 0 0 0 nhwhite 0 0 1
## 0002004C.1 63 1 0 0 0 0 nhwhite 0 0 1
## 0002004C.2 63 1 0 0 0 0 nhwhite 0 0 1
## 0002006C.1 63 1 0 1 1 0 nhwhite 0 NA NA
## 0002008C.1 63 1 0 0 0 0 nhwhite 0 0 1
## time age_enter age_exit povtran age1r age2r
## 0001002C.1 1 6.433333 7.894167 0 6 8
## 0001002C.2 2 7.894167 9.750000 0 8 10
## 0001007C.1 1 5.300000 6.825000 0 5 7
## 0001007C.2 2 6.825000 8.916667 0 7 9
## 0001010C.1 1 5.885833 7.385833 0 6 7
## 0001010C.2 2 7.385833 9.333333 0 7 9
## 0002004C.1 1 5.450000 6.977500 0 5 7
## 0002004C.2 2 6.977500 9.083333 0 7 9
## 0002006C.1 1 5.158333 6.685833 1 5 7
## 0002008C.1 1 5.905833 7.433333 0 6 7
So, this shows us the repeated measures nature of the longitudinal data set.
#poverty transition based on mother's education at time 1.
fit<-survfit(Surv(time = time, event = povtran)~mlths, e.long)
summary(fit)
## Call: survfit(formula = Surv(time = time, event = povtran) ~ mlths,
## data = e.long)
##
## 256 observations deleted due to missingness
## mlths=0
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 12643 307 0.976 0.00137 0.973 0.978
## 2 6168 203 0.944 0.00258 0.939 0.949
##
## mlths=1
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 769 107 0.861 0.0125 0.837 0.886
## 2 331 49 0.733 0.0199 0.695 0.773
ggsurvplot(fit,conf.int = T, risk.table = F, title = "Survivorship Function for Infant Mortality", xlab = "Time in Months")
plot(fit, col=c(2,3),
ylim=c(.5,1), lwd=2 ,
main="Survival function for poverty transition, K-5th Grade",
xlab="Wave of survey", ylab="% Not Experiencing Transition")
legend("bottomleft",col = c(2,3),
lty=1,lwd=2 ,
legend=c("Mom HS or more", "Mom < HS"))
survdiff(Surv(time = time, event = povtran)~mlths, e.long)
## Call:
## survdiff(formula = Surv(time = time, event = povtran) ~ mlths,
## data = e.long)
##
## n=13412, 256 observations deleted due to missingness.
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## mlths=0 12643 510 629.4 22.7 427
## mlths=1 769 156 36.6 390.0 427
##
## Chisq= 427 on 1 degrees of freedom, p= 0
#poverty transition based on mother's education at time 1 and child's race/ethnicity
fit2<-survfit(Surv(time = time, event = povtran)~mlths+race_rec, e.long)
summary(fit2)
## Call: survfit(formula = Surv(time = time, event = povtran) ~ mlths +
## race_rec, data = e.long)
##
## 258 observations deleted due to missingness
## mlths=0, race_rec=hispanic
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 1418 70 0.951 0.00575 0.939 0.962
## 2 674 42 0.891 0.01037 0.871 0.912
##
## mlths=0, race_rec=nhasian
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 668 20 0.97 0.00659 0.957 0.983
## 2 324 10 0.94 0.01130 0.918 0.963
##
## mlths=0, race_rec=nhblack
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 801 57 0.929 0.00908 0.911 0.947
## 2 372 33 0.846 0.01600 0.816 0.878
##
## mlths=0, race_rec=nhwhite
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 9109 133 0.985 0.00126 0.983 0.988
## 2 4488 96 0.964 0.00246 0.960 0.969
##
## mlths=0, race_rec=other
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 645 27 0.958 0.00789 0.943 0.974
## 2 309 22 0.890 0.01581 0.859 0.921
##
## mlths=1, race_rec=hispanic
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 347 53 0.847 0.0193 0.810 0.886
## 2 147 27 0.692 0.0313 0.633 0.756
##
## mlths=1, race_rec=nhasian
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 60 6 0.900 0.0387 0.827 0.979
## 2 27 1 0.867 0.0496 0.775 0.970
##
## mlths=1, race_rec=nhblack
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 62 12 0.806 0.0502 0.714 0.911
## 2 25 3 0.710 0.0685 0.587 0.858
##
## mlths=1, race_rec=nhwhite
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 271 33 0.878 0.0199 0.840 0.918
## 2 119 13 0.782 0.0307 0.724 0.845
##
## mlths=1, race_rec=other
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 29 3 0.897 0.0566 0.792 1.000
## 2 13 5 0.552 0.1259 0.353 0.863
cols<-RColorBrewer::brewer.pal(n=5, "Greys")
#ggsurvplot(fit2,conf.int = T, risk.table = F, title = "Survivorship Function for Infant Mortality", xlab = "Time in Months")
plot(fit2,
col=rep(cols,2),
lty=c(1,1,1,1,1,2,2,2,2,2),
ylim=c(.5,1), lwd=2 )
title(main="Survival function for poverty transition, K-5th Grade",
sub="By Race and Mother's Education",
xlab="Wave of survey", ylab="% Not Experiencing Transition")
legend("bottomleft",col=rep(cols,2),
lty=c(1,1,1,1,1,2,2,2,2,2),
lwd=2 ,
legend=c("Mom > HS & Hispanic",
"Mom > HS & Asian",
"Mom > HS & NH black",
"Mom > HS & NH white",
"Mom > HS & NH other",
"Mom < HS & Hispanic",
"Mom <HS & Asian",
"Mom < HS & NH black",
"Mom <HS & NH white",
"Mom < HS & NH other"), cex=.8)
survdiff(Surv(time = age2r, event = povtran)~mlths+race_rec, e.long)
## Call:
## survdiff(formula = Surv(time = age2r, event = povtran) ~ mlths +
## race_rec, data = e.long)
##
## n=13410, 258 observations deleted due to missingness.
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## mlths=0, race_rec=hispanic 1418 112 68.89 26.9817 30.836
## mlths=0, race_rec=nhasian 668 30 31.22 0.0474 0.051
## mlths=0, race_rec=nhblack 801 90 37.69 72.6061 78.872
## mlths=0, race_rec=nhwhite 9109 229 460.79 116.5993 388.285
## mlths=0, race_rec=other 645 49 31.11 10.2891 11.059
## mlths=1, race_rec=hispanic 347 80 15.77 261.5318 274.443
## mlths=1, race_rec=nhasian 60 7 2.78 6.3939 6.577
## mlths=1, race_rec=nhblack 62 15 2.81 52.8267 54.354
## mlths=1, race_rec=nhwhite 271 46 13.51 78.1156 81.713
## mlths=1, race_rec=other 29 8 1.43 30.3300 31.140
##
## Chisq= 672 on 9 degrees of freedom, p= 0
Which, again shows us that at least two of these groups are different from one another.
options(survey.lonely.psu = "adjust")
e.long<-e.long[complete.cases(e.long$c15fppsu, e.long$race_rec, e.long$mlths),]
des2<-svydesign(ids = ~c15fppsu, strata = ~c15fpstr, weights=~c1_5fp0, data=e.long, nest=T)
fit.s<-svykm(Surv(time, povtran)~race_rec, design=des2, se=T)
summary(fit.s)
## Length Class Mode
## hispanic 3 svykm list
## nhasian 3 svykm list
## nhblack 3 svykm list
## nhwhite 3 svykm list
## other 3 svykm list
#use svyby to find the %of infants that die before age 1, by rural/urban status
svyby(~povtran, ~race_rec+time, des2, svymean)
## race_rec time povtran se
## hispanic.1 hispanic 1 0.15132915 0.015651082
## nhasian.1 nhasian 1 0.08385973 0.022923951
## nhblack.1 nhblack 1 0.17636749 0.028999576
## nhwhite.1 nhwhite 1 0.04393319 0.005601312
## other.1 other 1 0.10676774 0.039838817
## hispanic.2 hispanic 2 0.09195957 0.012241587
## nhasian.2 nhasian 2 0.01680560 0.006453805
## nhblack.2 nhblack 2 0.10575151 0.019892545
## nhwhite.2 nhwhite 2 0.02638244 0.003696736
## other.2 other 2 0.12424443 0.035564032
#test statistic
svylogrank(Surv(time, povtran)~mlths, design=des2)
## [[1]]
## score
## [1,] 42480.37 5138.529 8.267029 1.373387e-16
##
## [[2]]
## chisq p
## 6.834377e+01 1.373387e-16
##
## attr(,"class")
## [1] "svylogrank"