DATA ANALYSIS : Shiny App Project

Shan
September 9th, 2016

OBJECTIVE

The Objective of the project is to perform user friendly data analysis on web and develop predictive models.The app may be viewed at https://shan4224.shinyapps.io/Project/
The .csv data can be uploaded . We first visualize the summary of data.

  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50  



Visualize The Data

Then we understand the relation among various variables of data through plots.

plot of chunk unnamed-chunk-2

Model Fitting

We select a train data in the left side panel of the app. We select a dependent variable and fit a predictive model using tree algorithms.

n= 150 

node), split, n, loss, yval, (yprob)
      * denotes terminal node

1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)  
  2) Petal.Length< 2.45 50   0 setosa (1.00000000 0.00000000 0.00000000) *
  3) Petal.Length>=2.45 100  50 versicolor (0.00000000 0.50000000 0.50000000)  
    6) Petal.Width< 1.75 54   5 versicolor (0.00000000 0.90740741 0.09259259) *
    7) Petal.Width>=1.75 46   1 virginica (0.00000000 0.02173913 0.97826087) *

Predictive Analysis

We may select any test data in leftside panel of the app. We predict the dependent variable for test data.

Prediction for last six observations.

    setosa versicolor virginica
145      0 0.02173913 0.9782609
146      0 0.02173913 0.9782609
147      0 0.02173913 0.9782609
148      0 0.02173913 0.9782609
149      0 0.02173913 0.9782609
150      0 0.02173913 0.9782609