Shan
September 9th, 2016
The Objective of the project is to perform user friendly data analysis on web and develop predictive models.The app may be viewed at https://shan4224.shinyapps.io/Project/
The .csv data can be uploaded . We first visualize the summary of data.
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
Then we understand the relation among various variables of data through plots.
<script type='text/javascript' src=E:/R_RStudio_Analytics/R/R3.3.1/library/rCharts/libraries/polycharts/js/polychart2.standalone.js></script>
<style>
.rChart {
display: block;
margin-left: auto;
margin-right: auto;
width: 800px;
height: 400px;
}
</style>
<div id = 'chart2194711922cc' class = 'rChart polycharts'></div>
<script type='text/javascript'>
var chartParams = {
"dom": "chart2194711922cc",
"width": 800,
"height": 400,
"layers": [
{
"x": "Sepal.Width",
"y": "Sepal.Length",
"data": {
"Sepal.Length": [ 5.1, 4.9, 4.7, 4.6, 5, 5.4, 4.6, 5, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5, 5, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5, 5.5, 4.9, 4.4, 5.1, 5, 4.5, 4.4, 5, 5.1, 4.8, 5.1, 4.6, 5.3, 5, 7, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5, 5.9, 6, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6, 5.7, 5.5, 5.5, 5.8, 6, 5.4, 6, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9 ],
"Sepal.Width": [ 3.5, 3, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3, 3, 4, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2, 3, 2.2, 2.9, 2.9, 3.1, 3, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3, 2.8, 3, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3, 3.4, 3.1, 2.3, 3, 2.5, 2.6, 3, 2.6, 2.3, 2.7, 3, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3, 2.9, 3, 3, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3, 2.5, 2.8, 3.2, 3, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3, 2.8, 3, 2.8, 3.8, 2.8, 2.8, 2.6, 3, 3.4, 3.1, 3, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3, 2.5, 3, 3.4, 3 ],
"Petal.Length": [ 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4, 4.9, 4.7, 4.3, 4.4, 4.8, 5, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4, 4.4, 4.6, 4, 3.3, 4.2, 4.2, 4.2, 4.3, 3, 4.1, 6, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5, 5.1, 5.3, 5.5, 6.7, 6.9, 5, 5.7, 4.9, 6.7, 4.9, 5.7, 6, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5, 5.2, 5.4, 5.1 ],
"Petal.Width": [ 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1, 1.3, 1.4, 1, 1.5, 1, 1.4, 1.3, 1.4, 1.5, 1, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1, 1.1, 1, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2, 1.9, 2.1, 2, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2, 2, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2, 2.3, 1.8 ],
"Species": [ "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "setosa", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "versicolor", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica", "virginica" ]
},
"facet": "Species"
}
],
"facet": {
"type": "wrap",
"var": "Species"
},
"guides": [],
"coord": [],
"id": "chart2194711922cc"
}
_.each(chartParams.layers, function(el){
el.data = polyjs.data(el.data)
})
var graph_chart2194711922cc = polyjs.chart(chartParams);
</script>
We select a train data in the left side panel of the app. We select a dependent variable and fit a predictive model using tree algorithms.
n= 150
node), split, n, loss, yval, (yprob)
* denotes terminal node
1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
2) Petal.Length< 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) *
3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)
6) Petal.Width< 1.75 54 5 versicolor (0.00000000 0.90740741 0.09259259) *
7) Petal.Width>=1.75 46 1 virginica (0.00000000 0.02173913 0.97826087) *
We may select any test data in leftside panel of the app. We predict the dependent variable for test data.
Prediction for last six observations.
setosa versicolor virginica
145 0 0.02173913 0.9782609
146 0 0.02173913 0.9782609
147 0 0.02173913 0.9782609
148 0 0.02173913 0.9782609
149 0 0.02173913 0.9782609
150 0 0.02173913 0.9782609