First we load the required packages and create some objects to compile data on trait evolution for each species.
require(dplyr)
require(tidyr)
require(ggplot2)
require(plotly)
require(webshot)
t <- 0:100 # generate time vector
dt <- NULL # generate object to compile time-series data
cols <- NULL # generate object to compile trendline colours
params/ folderWe’ll use the parameters supplied in your scripts to generate brownian trait evolution trendline for each species.
spp.files <- dir("params/")[dir("params/") != "params_tmpl.R"]
for(spp in spp.files){
# source parameters for each species
source(paste("params", spp, sep= "/"))
# generate trait evolution time-series and compile plotting data
dt <- rbind(dt, data.frame(t,
trait = c(0, rnorm(n = length(t) - 1, sd = sqrt(sig2)) %>% cumsum()),
species = species.name))
cols <- c(cols, color)
}
Use the data generated to plot all species.
p <- ggplot(data=dt, aes(x=t, y=trait, group = species, colour = species)) +
geom_line() + scale_colour_manual(values=cols)
ggplotly(p)