Dan's Thesis Analyses - Single Leg Stand (Mean)

load(file="/Users/meganwilliams/Desktop/UMBC 2016/Dan's Thesis/DanThesisFinal.rdata")
library(lmerTest)
library(zUtil)
library(zStat)

Single Leg Stand (Mean) - Model 1 (Main Effects)

mm1 = lmer(PhyPerfSingleMN~Age + Sex + EF + Race + BMI + PovStat + WRATtotal + (1|HNDid), data=DanThesisFinal,REML=F)

summary(mm1)
## Linear mixed model fit by maximum likelihood t-tests use Satterthwaite
##   approximations to degrees of freedom [lmerMod]
## Formula: 
## PhyPerfSingleMN ~ Age + Sex + EF + Race + BMI + PovStat + WRATtotal +  
##     (1 | HNDid)
##    Data: DanThesisFinal
## 
##      AIC      BIC   logLik deviance df.resid 
##   8529.0   8582.7  -4254.5   8509.0     1581 
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -5.2488350 -0.0758669  0.1729614  0.3802845  2.6114149 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 4.777249 2.185692
##  Residual             8.109560 2.847729
## Number of obs: 1591, groups:  HNDid, 1112
## 
## Fixed effects:
##                   Estimate    Std. Error            df  t value   Pr(>|t|)
## (Intercept)    30.69807418    0.84078349  763.09050000 36.51127 < 2.22e-16
## Age            -0.10798063    0.01100725  867.77850000 -9.80995 < 2.22e-16
## SexMen          0.09801145    0.20059620  674.04710000  0.48860  0.6252833
## EF              0.13181846    0.04433891 1250.57480000  2.97297  0.0030058
## RaceAfrAm       0.67004740    0.21382079  689.59580000  3.13369  0.0017994
## BMI            -0.12082193    0.01466923  805.28890000 -8.23642 6.6613e-16
## PovStatBelow   -0.35301061    0.21728448  703.11080000 -1.62465  0.1046859
## WRATtotal       0.01854419    0.01528047  761.25850000  1.21359  0.2252816
## 
## Correlation of Fixed Effects:
##             (Intr) Age    SexMen EF     RcAfrA BMI    PvSttB
## Age          0.001                                          
## SexMen      -0.193 -0.043                                   
## EF           0.232  0.078 -0.013                            
## RaceAfrAm   -0.307 -0.006 -0.026  0.131                     
## BMI         -0.503  0.041  0.144  0.043 -0.030              
## PovStatBelw -0.274  0.121  0.050  0.090 -0.047  0.098       
## WRATtotal   -0.819 -0.018  0.014 -0.378  0.224 -0.027  0.172

Single Leg Stand (Mean) - Model 2 (Two-Way Interactions)

mm2 = lmer(PhyPerfSingleMN~(Age + Sex + EF + Race)^2 + BMI + PovStat + WRATtotal + (1|HNDid), data=DanThesisFinal,REML=F)

summary(mm2)
## Linear mixed model fit by maximum likelihood t-tests use Satterthwaite
##   approximations to degrees of freedom [lmerMod]
## Formula: PhyPerfSingleMN ~ (Age + Sex + EF + Race)^2 + BMI + PovStat +  
##     WRATtotal + (1 | HNDid)
##    Data: DanThesisFinal
## 
##      AIC      BIC   logLik deviance df.resid 
##   8525.0   8611.0  -4246.5   8493.0     1575 
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -5.0977145 -0.0709687  0.1563843  0.3809606  2.6387646 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 4.784148 2.187269
##  Residual             7.987273 2.826176
## Number of obs: 1591, groups:  HNDid, 1112
## 
## Fixed effects:
##                       Estimate    Std. Error            df  t value
## (Intercept)       3.030088e+01  8.528121e-01  7.895034e+02 35.53055
## Age              -1.514995e-01  2.081789e-02  9.273897e+02 -7.27737
## SexMen            4.813023e-01  3.245822e-01  7.303491e+02  1.48284
## EF                2.006874e-01  7.476538e-02  1.134858e+03  2.68423
## RaceAfrAm         1.011599e+00  2.934380e-01  7.683536e+02  3.44740
## BMI              -1.210151e-01  1.484117e-02  8.223581e+02 -8.15401
## PovStatBelow     -3.518779e-01  2.171123e-01  7.203831e+02 -1.62072
## WRATtotal         2.281010e-02  1.530127e-02  7.806898e+02  1.49073
## Age:SexMen       -1.492972e-02  2.201654e-02  8.747103e+02 -0.67811
## Age:EF            1.262432e-02  4.569193e-03  1.272253e+03  2.76292
## Age:RaceAfrAm     7.096341e-02  2.320795e-02  8.938358e+02  3.05772
## SexMen:EF        -1.206776e-01  8.164043e-02  1.163073e+03 -1.47816
## SexMen:RaceAfrAm -5.336895e-01  4.191874e-01  7.273958e+02 -1.27315
## EF:RaceAfrAm      2.213173e-02  8.166355e-02  1.141608e+03  0.27101
##                    Pr(>|t|)
## (Intercept)      < 2.22e-16
## Age              7.2498e-13
## SexMen            0.1385492
## EF                0.0073756
## RaceAfrAm         0.0005968
## BMI              1.3323e-15
## PovStatBelow      0.1055156
## WRATtotal         0.1364358
## Age:SexMen        0.4978789
## Age:EF            0.0058112
## Age:RaceAfrAm     0.0022967
## SexMen:EF         0.1396359
## SexMen:RaceAfrAm  0.2033706
## EF:RaceAfrAm      0.7864315

Single Leg Stand (Mean) - Model 3 (Three-Way Interactions)

mm3 = lmer(PhyPerfSingleMN~(Age + Sex + EF + Race)^3 + BMI + PovStat + WRATtotal + (1|HNDid), data=DanThesisFinal,REML=F)

summary(mm3)
## Linear mixed model fit by maximum likelihood t-tests use Satterthwaite
##   approximations to degrees of freedom [lmerMod]
## Formula: PhyPerfSingleMN ~ (Age + Sex + EF + Race)^3 + BMI + PovStat +  
##     WRATtotal + (1 | HNDid)
##    Data: DanThesisFinal
## 
##      AIC      BIC   logLik deviance df.resid 
##   8531.6   8639.1  -4245.8   8491.6     1571 
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -5.0464990 -0.0745487  0.1555329  0.3835197  2.6538498 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 4.832037 2.198190
##  Residual             7.940914 2.817963
## Number of obs: 1591, groups:  HNDid, 1112
## 
## Fixed effects:
##                           Estimate    Std. Error            df  t value
## (Intercept)           3.035110e+01  8.549985e-01  7.967688e+02 35.49842
## Age                  -1.512194e-01  2.617183e-02  1.063002e+03 -5.77795
## SexMen                4.024961e-01  3.420634e-01  8.012986e+02  1.17667
## EF                    1.573029e-01  8.819673e-02  1.197822e+03  1.78355
## RaceAfrAm             9.808975e-01  2.989628e-01  8.134697e+02  3.28100
## BMI                  -1.208190e-01  1.486960e-02  8.292488e+02 -8.12524
## PovStatBelow         -3.594479e-01  2.174570e-01  7.274022e+02 -1.65296
## WRATtotal             2.252123e-02  1.532329e-02  7.904950e+02  1.46974
## Age:SexMen           -9.999182e-03  3.736094e-02  9.235866e+02 -0.26764
## Age:EF                8.579493e-03  8.351058e-03  1.350861e+03  1.02735
## Age:RaceAfrAm         7.333641e-02  3.216398e-02  9.999285e+02  2.28008
## SexMen:EF            -2.807411e-02  1.255520e-01  1.162409e+03 -0.22361
## SexMen:RaceAfrAm     -4.613367e-01  4.323552e-01  7.830047e+02 -1.06703
## EF:RaceAfrAm          8.491041e-02  1.160871e-01  1.189143e+03  0.73144
## Age:SexMen:EF         7.203205e-03  9.169950e-03  1.282918e+03  0.78552
## Age:SexMen:RaceAfrAm -1.246083e-02  4.687610e-02  9.038141e+02 -0.26582
## Age:EF:RaceAfrAm      1.469279e-03  9.322333e-03  1.311008e+03  0.15761
## SexMen:EF:RaceAfrAm  -1.330890e-01  1.638047e-01  1.156455e+03 -0.81249
##                        Pr(>|t|)
## (Intercept)          < 2.22e-16
## Age                  9.9259e-09
## SexMen                0.2396762
## EF                    0.0747507
## RaceAfrAm             0.0010784
## BMI                  1.7764e-15
## PovStatBelow          0.0987703
## WRATtotal             0.1420306
## Age:SexMen            0.7890383
## Age:EF                0.3044377
## Age:RaceAfrAm         0.0228128
## SexMen:EF             0.8231036
## SexMen:RaceAfrAm      0.2862864
## EF:RaceAfrAm          0.4646563
## Age:SexMen:EF         0.4322922
## Age:SexMen:RaceAfrAm  0.7904349
## Age:EF:RaceAfrAm      0.8747896
## SexMen:EF:RaceAfrAm   0.4166801

Single Leg Stand (Mean) - Model 4 (Four-Way Interactions)

mm4 = lmer(PhyPerfSingleMN~(Age + Sex + EF + Race)^4 + BMI + PovStat + WRATtotal + (1|HNDid), data=DanThesisFinal,REML=F)

summary(mm4)
## Linear mixed model fit by maximum likelihood t-tests use Satterthwaite
##   approximations to degrees of freedom [lmerMod]
## Formula: PhyPerfSingleMN ~ (Age + Sex + EF + Race)^4 + BMI + PovStat +  
##     WRATtotal + (1 | HNDid)
##    Data: DanThesisFinal
## 
##      AIC      BIC   logLik deviance df.resid 
##   8533.3   8646.1  -4245.6   8491.3     1570 
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -5.0363359 -0.0701187  0.1551624  0.3854203  2.6545342 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 4.825661 2.196739
##  Residual             7.943160 2.818361
## Number of obs: 1591, groups:  HNDid, 1112
## 
## Fixed effects:
##                              Estimate    Std. Error            df  t value
## (Intercept)              3.033670e+01  8.551624e-01  7.984572e+02 35.47478
## Age                     -1.555139e-01  2.715584e-02  1.118261e+03 -5.72672
## SexMen                   4.119001e-01  3.423626e-01  8.094397e+02  1.20311
## EF                       1.677361e-01  8.991776e-02  1.241896e+03  1.86544
## RaceAfrAm                9.910859e-01  2.993992e-01  8.204185e+02  3.31025
## BMI                     -1.205657e-01  1.487241e-02  8.317833e+02 -8.10667
## PovStatBelow            -3.630823e-01  2.174946e-01  7.266198e+02 -1.66939
## WRATtotal                2.244452e-02  1.532046e-02  7.908078e+02  1.46500
## Age:SexMen              -2.200092e-03  3.959552e-02  1.001395e+03 -0.05556
## Age:EF                   1.162318e-02  9.798822e-03  1.370856e+03  1.18618
## Age:RaceAfrAm            7.727310e-02  3.283748e-02  1.039909e+03  2.35320
## SexMen:EF               -4.823993e-02  1.300422e-01  1.240921e+03 -0.37096
## SexMen:RaceAfrAm        -4.638914e-01  4.322832e-01  7.844191e+02 -1.07312
## EF:RaceAfrAm             6.874809e-02  1.192287e-01  1.239648e+03  0.57661
## Age:SexMen:EF            5.805039e-04  1.443775e-02  1.374945e+03  0.04021
## Age:SexMen:RaceAfrAm    -1.991600e-02  4.851988e-02  9.646169e+02 -0.41047
## Age:EF:RaceAfrAm        -3.685673e-03  1.274302e-02  1.318590e+03 -0.28923
## SexMen:EF:RaceAfrAm     -1.043131e-01  1.708075e-01  1.257488e+03 -0.61071
## Age:SexMen:EF:RaceAfrAm  1.109226e-02  1.869537e-02  1.313699e+03  0.59332
##                           Pr(>|t|)
## (Intercept)             < 2.22e-16
## Age                     1.3149e-08
## SexMen                  0.22928524
## EF                      0.06235552
## RaceAfrAm               0.00097282
## BMI                     1.7764e-15
## PovStatBelow            0.09547182
## WRATtotal               0.14331761
## Age:SexMen              0.95570010
## Age:EF                  0.23575631
## Age:RaceAfrAm           0.01879814
## SexMen:EF               0.71073361
## SexMen:RaceAfrAm        0.28354767
## EF:RaceAfrAm            0.56430980
## Age:SexMen:EF           0.96793364
## Age:SexMen:RaceAfrAm    0.68155162
## Age:EF:RaceAfrAm        0.77245036
## SexMen:EF:RaceAfrAm     0.54150486
## Age:SexMen:EF:RaceAfrAm 0.55307170

Single Leg Stand (Mean) - Model 5 (Retaining significant higher-order terms)

mm5 = lmer(PhyPerfSingleMN~Age + Sex + EF + Race + BMI + PovStat + WRATtotal + (1|HNDid) + Age*Race + Age*EF ,data=DanThesisFinal,REML=F)

summary(mm5)
## Linear mixed model fit by maximum likelihood t-tests use Satterthwaite
##   approximations to degrees of freedom [lmerMod]
## Formula: 
## PhyPerfSingleMN ~ Age + Sex + EF + Race + BMI + PovStat + WRATtotal +  
##     (1 | HNDid) + Age * Race + Age * EF
##    Data: DanThesisFinal
## 
##      AIC      BIC   logLik deviance df.resid 
##   8520.5   8584.9  -4248.2   8496.5     1579 
## 
## Scaled residuals: 
##        Min         1Q     Median         3Q        Max 
## -5.1364581 -0.0658631  0.1568661  0.3788438  2.6633921 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 4.814149 2.194117
##  Residual             7.989653 2.826597
## Number of obs: 1591, groups:  HNDid, 1112
## 
## Fixed effects:
##                    Estimate    Std. Error            df  t value
## (Intercept)    3.053272e+01  8.404978e-01  7.741354e+02 36.32695
## Age           -1.551715e-01  1.843523e-02  9.180688e+02 -8.41712
## SexMen         1.369801e-01  2.004655e-01  6.855194e+02  0.68331
## EF             1.560023e-01  4.541779e-02  1.321175e+03  3.43483
## RaceAfrAm      7.626878e-01  2.151793e-01  7.245358e+02  3.54443
## BMI           -1.215142e-01  1.463839e-02  8.184954e+02 -8.30106
## PovStatBelow  -3.531219e-01  2.172197e-01  7.169293e+02 -1.62564
## WRATtotal      2.119900e-02  1.526233e-02  7.716566e+02  1.38898
## Age:RaceAfrAm  6.831102e-02  2.315568e-02  8.903722e+02  2.95008
## Age:EF         1.219997e-02  4.556671e-03  1.276193e+03  2.67739
##                 Pr(>|t|)
## (Intercept)   < 2.22e-16
## Age           < 2.22e-16
## SexMen        0.49464170
## EF            0.00061130
## RaceAfrAm     0.00041873
## BMI           4.4409e-16
## PovStatBelow  0.10446485
## WRATtotal     0.16524097
## Age:RaceAfrAm 0.00326015
## Age:EF        0.00751503
## 
## Correlation of Fixed Effects:
##             (Intr) Age    SexMen EF     RcAfrA BMI    PvSttB WRATtt Ag:RAA
## Age          0.052                                                        
## SexMen      -0.194 -0.060                                                 
## EF           0.223 -0.001 -0.002                                          
## RaceAfrAm   -0.312 -0.108 -0.020  0.136                                   
## BMI         -0.502  0.024  0.142  0.036 -0.030                            
## PovStatBelw -0.275  0.049  0.049  0.076 -0.043  0.100                     
## WRATtotal   -0.819 -0.048  0.017 -0.361  0.228 -0.028  0.172              
## Age:RcAfrAm -0.064 -0.797  0.038  0.028  0.128  0.003  0.035  0.045       
## Age:EF      -0.020 -0.309  0.050  0.228  0.058 -0.026 -0.041  0.031  0.264
pAge = seq(-19,20)

hatPhyPerfSingleMN = zMixHat(DanThesisFinal, mm5, vary = "Age=pAge, Race=zQ(AfrAm,White)",fixedCov=c("BMI","Sex","EF","PovStat","WRATtotal"))

par(mar=c(4,4,.5,2),las = 1, lwd = 2)

HNDcolors = HNDpltColors()
## Error in eval(expr, envir, enclos): could not find function "HNDpltColors"
with(hatPhyPerfSingleMN[hatPhyPerfSingleMN$Race == "AfrAm",],plot(pAge,hat, lty = 1, col = "black", type = "l",ylim = c(24,32), ylab = "Time(Sec)", xlab = "Age",xaxt = "n" ))
with(hatPhyPerfSingleMN[hatPhyPerfSingleMN$Race == "White",], lines(pAge,hat, lty = 2, col = "black"))


axis(1,at=c(-20,-15,-10,-5,0,5,10,15,20),labels = c("30","35","40","45","50","55","60","65","70"))
legend(-20,32, zQ(AfrAm,White), lty = 1:2, col = "black",cex=.75,bty="n")

plot of chunk unnamed-chunk-6

pAge = seq(-19,20)

hatPhyPerfSingleMN = zMixHat(DanThesisFinal, mm5, vary = "Age=pAge, EF=zQ(-2.306585887,0.138815580,2.584217047)",fixedCov=c("BMI","Sex","Race","EF","PovStat","WRATtotal"))

par(mar=c(4,4,.5,2),las = 1, lwd = 2)

HNDcolors = HNDpltColors()
## Error in eval(expr, envir, enclos): could not find function "HNDpltColors"
with(hatPhyPerfSingleMN[hatPhyPerfSingleMN$EF == "-2.306585887",],plot(pAge,hat, lty = 1, col = "black", type = "l",ylim = c(24,32), ylab = "Time(Sec)", xlab = "Age",xaxt = "n" ))
## Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and 'y' lengths differ
with(hatPhyPerfSingleMN[hatPhyPerfSingleMN$EF == "0.138815580",], lines(pAge,hat, lty = 2, col = "black"))
## Error in xy.coords(x, y): 'x' and 'y' lengths differ
with(hatPhyPerfSingleMN[hatPhyPerfSingleMN$EF == "2.584217047",], lines(pAge,hat, lty = 3, col = "black"))
## Error in xy.coords(x, y): 'x' and 'y' lengths differ
axis(1,at=c(-20,-15,-10,-5,0,5,10,15,20),labels = c("30","35","40","45","50","55","60","65","70"))
## Error in axis(1, at = c(-20, -15, -10, -5, 0, 5, 10, 15, 20), labels = c("30", : plot.new has not been called yet
legend(-20,32, zQ(-2.306585887,0.138815580,2.584217047), lty = 1:2, col = "black",cex=.75,bty="n")
## Error in strwidth(legend, units = "user", cex = cex, font = text.font): plot.new has not been called yet