csbb0829

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
  #solar term 
  solar<-read.table("CalendarData.txt",header=TRUE,sep="")
  solar_short<-subset(solar,select=c("yyyymmdd",'year',
                                     "month","solar_term","solar_term_accu"))
  #weather station id
  weather_station<-read.table("WeatherStationData.txt",header=TRUE,sep="")
  north_station<-subset(weather_station,area==1&altitude<100)
  south_station<-subset(weather_station,area==3&altitude<100)
  
  #weather data
  weather_data<-read.table("RawWeatherData.txt",header=TRUE,sep="")
  north_weather_data<-subset(weather_data,stno %in% north_station$stno)
  south_weather_data<-subset(weather_data,stno %in% south_station$stno)

  #combine north and south weather data
  north_weather_data$area='north'
  south_weather_data$area='south'
  ns_weather_data<-rbind(north_weather_data,south_weather_data)
  
  #combine the weather data and solar
  ns_weather_data_solar<-merge(ns_weather_data,solar_short,by="yyyymmdd")
  ns_weather_removed_data_solar<-ns_weather_data_solar[
    round(ns_weather_data_solar$solar_term)==ns_weather_data_solar$solar_term,]
  
  #change solar_term_accu
  attach(ns_weather_removed_data_solar)
  ns_weather_removed_data_solar$solar_term_accu<-(year-2000)*24+solar_term

average temperature

  #TX01
  t<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$TX01>0,]
  ###solar
  tx01_solar<-aggregate(TX01~solar_term+area,
                        data=t,mean,na.rm=TRUE)
  g<-ggplot(data=tx01_solar,aes(solar_term,TX01,colour=area))
  g+geom_point(size=2,shape=21)+geom_line()+ylim(10,35)+
    ggtitle('average temperature per solar_term')+
    labs(y='average temperature')

  ###month
  tx01_month<-aggregate(TX01~month+area,
                        data=t,mean,na.rm=TRUE)
  g<-ggplot(data=tx01_month,aes(month,TX01,colour=area))
  g+geom_point(size=2,shape=21)+geom_line()+ylim(10,35)+
    ggtitle('average temperature per month')+
    labs(y='average temperature')

relative humidity RH02

  #RH01
  rh<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$RH02>0,]
  ###solar
  rh01_solar<-aggregate(RH02~solar_term+area,
                        data=rh,mean,na.rm=TRUE)
  g<-ggplot(data=rh01_solar,aes(solar_term,RH02,colour=area))
  g+geom_point(size=2,shape=21)+geom_line()+
    ggtitle('relative humidity per solar_term')+
    labs(y='relative humidity')

  ###month
  rh01_month<-aggregate(RH02~month+area,
                        data=rh,mean,na.rm=TRUE)
  g<-ggplot(data=rh01_month,aes(month,RH02,colour=area,fill=area))
  g+geom_point(size=2,shape=21)+geom_line()+
    ggtitle('relative humidity per month')+
    labs(y='relative humidity')

avg Precipitation

  ##PP01
  pp01<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$PP01>0,]
  ###solar
  pp01_solar<-aggregate(PP01~solar_term+area,
                        data=pp01,mean,na.rm=TRUE)
  g<-ggplot(data=pp01_solar,aes(solar_term,PP01,colour=area))
  g+geom_point(size=2,shape=21)+geom_line()+
    ggtitle('avg Precipitation per solar_term')+
    labs(y='avg Precipitation')

  ###month
  pp01_month<-aggregate(PP01~month+area,
                        data=pp01,mean,na.rm=TRUE)
  g<-ggplot(data=pp01_month,aes(factor(month),PP01,colour=area,fill=area))
  g+geom_bar(stat='identity',position="dodge")+
    ggtitle('avg Precipitation per month')+
    labs(y='avg Precipitation')

24 solar term

0105,Slight cold,小寒

0120,Great cold,大寒

0204,Spring begins,立春

0219,The rains,雨水

0306,Insects awaken,驚蟄

0321,Vernal equinox,春分

0405,Clear and bright,清明

0420,Grain rain,穀雨

0506,Summer begins,立夏

0521,Grain buds,小滿

0606,Grain in ear,芒種

0621,Summer solstice,夏至

0707,Slight heat,小暑

0723,Great heat,大暑

0808,Autumn begins,立秋

0823,Stopping the heat,處暑

0908,White dews,白露

0923,Autumn equinox,秋分

1008,Cold dews,寒露

1023,Hoar-frost falls,霜降

1107,Winter begins,立冬

1122,Light snow,小雪

1207,Heavy snow,大雪

1222,Winter solstice,冬至

taipei atopic dermatitis

plot month & solar term 芒種下降, 小暑上升

  taipei_ad<-read.table('ad_taipei_mo',header=FALSE,sep=" ")
  names(taipei_ad)<-c('id','sex','date','area')
  taipei_ad$num=1
  #by date
  taipei_ad_day<-aggregate(data=taipei_ad,num~date,sum,na.rm=TRUE)
  taipei_ad_day$date<-as.Date(taipei_ad_day$date,formtat='%Y-%m-%d')
  #remove 1999 ,from 2000-01-01 to 2010-12-31
  taipei_ad_day=taipei_ad_day[taipei_ad_day$date>=as.Date('2000-01-01'),]
  
  #set solar date format
  solar$date<-paste(as.character(solar$year),
                    "-",as.character(solar$month),
                    "-",as.character(solar$day),sep="")
  solar$date=as.Date(solar$date,format='%Y-%m-%d')
  solar_short1<-subset(solar,select=c("date",'year',
                                     "month","solar_term","solar_term_accu"))
  

  #combine the ad data and solar=>complete
  taipei_ad_day1<-merge(solar_short1,taipei_ad_day,by='date')
  taipei_ad_day_remove<-taipei_ad_day1[
    round(taipei_ad_day1$solar_term)==taipei_ad_day1$solar_term,]

  #change acc_solar 
  attach(taipei_ad_day_remove)
## The following objects are masked from ns_weather_removed_data_solar:
## 
##     month, solar_term, solar_term_accu, year
  taipei_ad_day_remove$solar_term_accu<-(year-2000)*24+solar_term
  
###solar
  ad_solar<-aggregate(num~solar_term,
                        data=taipei_ad_day_remove,mean,na.rm=TRUE)
  g<-ggplot(data=ad_solar,aes(solar_term,num))
  g+geom_point(size=4,shape=20,colour='red')+geom_line(colour='blue')+
    ylim(20,55)+
    ggtitle('atopic dermatitis per solar_term')+
    labs(y='atopic dermatitis')

  ###month
  ad_month<-aggregate(num~month,
                      data=taipei_ad_day_remove,mean,na.rm=TRUE)
  g<-ggplot(data=ad_month,aes(month,num))
  g+geom_point(size=4,shape=20,colour='red')+geom_line(colour='blue')+
    ylim(20,55)+
    ggtitle('atopic dermatitis per month')+
    labs(y='atopic dermatitis')

11th solar term is nadir and 13th solar term is peak

north

芒種下降, 小暑上升

  north_ad<-read.table('ad_north_mo',header=FALSE,sep=" ")
  names(north_ad)<-c('id','sex','date','area')
  north_ad$num=1
  #by date
  north_ad_day<-aggregate(data=north_ad,num~date,sum,na.rm=TRUE)
  north_ad_day$date<-as.Date(north_ad_day$date,formtat='%Y-%m-%d')
  #remove 1999 ,from 2000-01-01 to 2010-12-31
  north_ad_day=north_ad_day[north_ad_day$date>=as.Date('2000-01-01'),]
  
 
  #combine the ad data and solar=>complete
  north_ad_day1<-merge(solar_short1,north_ad_day,by='date')
  north_ad_day_remove<-north_ad_day1[
    round(north_ad_day1$solar_term)==north_ad_day1$solar_term,]
  #test
  table(north_ad_day_remove$solar_term)
## 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
## 158 158 158 159 165 165 165 165 165 165 165 165 165 165 165 165 164 164 
##  19  20  21  22  23  24 
## 165 165 165 163 159 161
  ##ad
  
  #change acc_solar 
  attach(north_ad_day_remove)
## The following objects are masked from taipei_ad_day_remove:
## 
##     date, month, num, solar_term, solar_term_accu, year
## The following objects are masked from ns_weather_removed_data_solar:
## 
##     month, solar_term, solar_term_accu, year
  north_ad_day_remove$solar_term_accu<-(year-2000)*24+solar_term
  
 
  ###solar
  north_ad_solar<-aggregate(num~solar_term,
                      data=north_ad_day_remove,mean,na.rm=TRUE)
  g<-ggplot(data=north_ad_solar,aes(solar_term,num))
  g+geom_point(size=4,shape=20,colour='red')+geom_line(colour='blue')+
    ylim(20,55)+
    ggtitle('atopic dermatitis per solar_term in north')+
    labs(y='atopic dermatitis')

  ###month
  north_ad_month<-aggregate(num~month,
                      data=north_ad_day_remove,mean,na.rm=TRUE)
  g<-ggplot(data=north_ad_month,aes(month,num))
  g+geom_point(size=4,shape=20,colour='red')+geom_line(colour='blue')+
    ylim(20,55)+
    ggtitle('atopic dermatitis per month in north')+
    labs(y='atopic dermatitis')

south

芒種下降, 小暑上升

  south_ad<-read.table('ad_south_mo',header=FALSE,sep=" ")
  names(south_ad)<-c('id','sex','date','area')
  south_ad$num=1
  #by date
  south_ad_day<-aggregate(data=south_ad,num~date,sum,na.rm=TRUE)
  south_ad_day$date<-as.Date(south_ad_day$date,formtat='%Y-%m-%d')
  #remove 1999 ,from 2000-01-01 to 2010-12-31
  south_ad_day=south_ad_day[south_ad_day$date>=as.Date('2000-01-01'),]
  
  #test 
  min(south_ad_day$date)
## [1] "2000-01-01"
  #combine the ad data and solar=>complete
  south_ad_day1<-merge(solar_short1,south_ad_day,by='date')
  south_ad_day_remove<-south_ad_day1[
    round(south_ad_day1$solar_term)==south_ad_day1$solar_term,]
  #test
  table(south_ad_day_remove$solar_term)
## 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
## 157 158 155 160 164 164 164 163 165 165 165 164 165 164 165 165 165 163 
##  19  20  21  22  23  24 
## 165 165 165 163 160 161
  ##ad
  
  #change acc_solar 
  attach(south_ad_day_remove)
## The following objects are masked from north_ad_day_remove:
## 
##     date, month, num, solar_term, solar_term_accu, year
## The following objects are masked from taipei_ad_day_remove:
## 
##     date, month, num, solar_term, solar_term_accu, year
## The following objects are masked from ns_weather_removed_data_solar:
## 
##     month, solar_term, solar_term_accu, year
  south_ad_day_remove$solar_term_accu<-(year-2000)*24+solar_term
  
  ###solar
  south_ad_solar<-aggregate(num~solar_term,
                            data=south_ad_day_remove,mean,na.rm=TRUE)
  g<-ggplot(data=south_ad_solar,aes(solar_term,num))
  g+geom_point(size=4,shape=20,colour='red')+geom_line(colour='blue')+
    ylim(20,55)+
    ggtitle('atopic dermatitis per solar_term in south')+
    labs(y='atopic dermatitis')

  ###month
  south_ad_month<-aggregate(num~month,
                      data=south_ad_day_remove,mean,na.rm=TRUE)
  g<-ggplot(data=south_ad_month,aes(month,num))
  g+geom_point(size=4,shape=20,colour='red')+geom_line(colour='blue')+
    ylim(20,55)+
    ggtitle('atopic dermatitis per month in south')+
    labs(y='atopic dermatitis')

##the eather data detail

TX01 平均氣溫(℃)

TX02 最高氣溫(℃)

TX03 最高氣溫時間

TX04 最低氣溫(℃)

TX05 最低氣溫時間

TX06 平均露點溫度(℃)

TX07 平均濕球氣溫(℃)

TX08 黑球溫度(℃)

TX09 氣溫日較差(℃)

RH 相對濕度

RH02 最大相對濕度(%)

RH04 最小相對濕度(%)

PP 降水

PP01 降水量(mm)

PP02 降水時數(hr)

PP03 十分鐘最大降水量(mm)

PP05 一小時最大降水量(mm)

The ad for each year in North and South 08/19

This is for north

We found that 9th is peak and 11th is nadir totally in North and South

Also,there are the same pattern in 2005,2006,2008,2009 and 2010 in North

Besides,there are the same pattern in 2002,2004,2005,2006,2008,2009 and 2010 in South

#North each year plot
north_ad_solar1<-aggregate(num~solar_term+year,
                            data=north_ad_day_remove,mean,na.rm=TRUE)

north_ad_solar_total<-aggregate(num~solar_term,
                            data=north_ad_solar1,sum,na.rm=TRUE)
ggplot(data=north_ad_solar_total,aes(solar_term,num))+geom_point()+geom_line()

11th is nadir

ggplot(data=north_ad_solar1[1:72,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=north_ad_solar1[73:144,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=north_ad_solar1[145:216,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=north_ad_solar1[217:264,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

#South each year plot
south_ad_solar1<-aggregate(num~solar_term+year,
                            data=south_ad_day_remove,mean,na.rm=TRUE)

south_ad_solar_total<-aggregate(num~solar_term,
                            data=south_ad_solar1,sum,na.rm=TRUE)
ggplot(data=south_ad_solar_total,aes(solar_term,num))+geom_point()+geom_line()

This is for South

#South each year plot

ggplot(data=south_ad_solar1[1:72,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=south_ad_solar1[73:144,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=south_ad_solar1[145:216,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=south_ad_solar1[217:264,],aes(solar_term,num,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

TX01 AVG_Temperature

平均氣溫

In 2010, the TX01 decreases in 11th in North

In 2006,2009 and 2010, the TX01 decreases in 11th in South

PS:there are the number for AD decreasing in 2005,2006,2008,2009 and 2010 in North

Besides,there are the same pattern for AD in 2002,2004,2005,2006,2008,2009 and 2010 in South

It seems that the avg Temperature would predict the AD

tx01<-subset(t,,select=c(TX01,solar_term_accu,solar_term,area,year))
tx02<-aggregate(TX01~solar_term+area+year,
                        data=tx01,mean,na.rm=TRUE)
n_tx02<-subset(tx02,area=='north')
s_tx02<-subset(tx02,area=='south')

In North

#North for ploting 
ggplot(data=n_tx02[1:72,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_tx02[73:144,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_tx02[145:216,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_tx02[217:264,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

In South

#South for ploting 
ggplot(data=s_tx02[1:72,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_tx02[73:144,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_tx02[145:216,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_tx02[217:264,],aes(solar_term,TX01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

RH02 max_relative_humidity

RH02 最大相對濕度(%)

In 2001,2004 and 2005 and 2009, the RH02 decreases in 11th in North

In 2001 and 2004, the RH02 decreases in 11th in South

PS:there are the number for AD decreasing in 2005,2006,2008 and 2010 in North

Besides,there are the same pattern for AD in 2002,2004,2005,2006,2008,2009 and 2010 in South

_It seems RH would not have power to predict AD__

rh01<-subset(rh,,select=c(RH02,solar_term_accu,solar_term,area,year))
rh02<-aggregate(RH02~solar_term+area+year,
                        data=rh01,mean,na.rm=TRUE)
n_rh02<-subset(rh02,area=='north')
s_rh02<-subset(rh02,area=='south')

In North

#North for ploting 
ggplot(data=n_rh02[1:72,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_rh02[73:144,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_rh02[145:216,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_rh02[217:264,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

In South

#South for ploting 
ggplot(data=s_rh02[1:72,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_rh02[73:144,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_rh02[145:216,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_rh02[217:264,],aes(solar_term,RH02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

PP PP01 PP03 PP05 降水

PP01 降水量(mm)

PP02 降水時數(hr)

PP03 十分鐘最大降水量(mm)

PP05 一小時最大降水量(mm)

Summary:

The PP01 decreases in 11th in North in 2004 and 2005 while it decreases in South in 2001 ,2002 and 2004

The PP02 decreases in 11th in North in 2001,2004,2005 while it decreases in South in 2000,2001,2004,2009 and 2010

The PP03 does not decrease in North while it decreases in South in 2001,2002,2004,2010

The PP05 does not decrease in North while it decreases in South in 2001,2002,2004

PS:there are the number for AD decreasing in 2005,2006,2008,2009 and 2010 in North

Besides,there are the same pattern for AD in 2002,2004,2005,2006,2008,2009 and 2010 in South

pp<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$PP01>0&ns_weather_removed_data_solar$PP02>0&ns_weather_removed_data_solar$PP03>0,]
pp1<-subset(pp,,select=c(PP01,PP02,PP03,PP05,
                          solar_term_accu,solar_term,area,year))

pp2<-aggregate(cbind(PP01,PP02,PP03,PP05)~solar_term+area+year,
                        data=pp1,mean,na.rm=TRUE)
n_pp2<-subset(pp2,area=='north')
s_pp2<-subset(pp2,area=='south')

PP01 降水量(mm)

The PP01 decreases in 11th in North in 2004 and 2005 while it decreases in South in 2001 ,2002 and 2004

降水量 In North

pp<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$PP01>0,]
pp01<-subset(pp,,select=c(PP01,solar_term_accu,solar_term,area,year))
pp02<-aggregate(PP01~solar_term+area+year,
                        data=pp01,mean,na.rm=TRUE)
n_pp21<-subset(pp02,area=='north')
s_pp21<-subset(pp02,area=='south')

#North for ploting  for PP01
ggplot(data=n_pp21[1:72,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp21[73:144,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp21[145:216,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp21[217:264,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

降水量 In South

#South for ploting  for PP01
ggplot(data=s_pp21[1:72,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp21[73:144,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp21[145:216,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp21[217:264,],aes(solar_term,PP01,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.) 
## Warning: Removed 10 rows containing missing values (geom_point).

PP02 降水時數

The PP02 decreases in 11th in North in 2001,2004,2005 while it decreases in South in 2000,2001,2004,2009 and 2010

降水時數 In North

pp<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$PP02>0,]
pp01<-subset(pp,,select=c(PP02,solar_term_accu,solar_term,area,year))
pp02<-aggregate(PP02~solar_term+area+year,
                        data=pp01,mean,na.rm=TRUE)
n_pp22<-subset(pp02,area=='north')
s_pp22<-subset(pp02,area=='south')
#North for ploting  for PP02
ggplot(data=n_pp22[1:72,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp22[73:144,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp22[145:216,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp22[217:264,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

降水時數 In South

#South for ploting  for PP02
ggplot(data=s_pp22[1:72,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)
## geom_path: Each group consists of only one observation. Do you need to
## adjust the group aesthetic?

ggplot(data=s_pp22[73:144,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp22[145:216,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp22[217:264,],aes(solar_term,PP02,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.) 
## Warning: Removed 4 rows containing missing values (geom_point).

PP03 十分鐘最大降水量(mm)

The PP03 does not decrease in North while it decreases in South in 2001,2002,2004,2010

十分鐘最大降水量 In North

pp<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$PP03>0,]
pp01<-subset(pp,,select=c(PP03,solar_term_accu,solar_term,area,year))
pp02<-aggregate(PP03~solar_term+area+year,
                        data=pp01,mean,na.rm=TRUE)
n_pp23<-subset(pp02,area=='north')
s_pp23<-subset(pp02,area=='south')
#North for ploting  for PP02
ggplot(data=n_pp23[1:72,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp23[73:144,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp23[145:216,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp23[217:264,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

十分鐘最大降水量 In South

#South for ploting  for PP02
ggplot(data=s_pp23[1:72,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp23[73:144,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp23[145:216,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp23[217:264,],aes(solar_term,PP03,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.) 
## Warning: Removed 10 rows containing missing values (geom_point).

PP05 一小時最大降水量(mm)

The PP05 does not decrease in North while it decreases in South in 2001,2002,2004

一小時最大降水量 In North

pp<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$PP05>0,]
pp01<-subset(pp,,select=c(PP05,solar_term_accu,solar_term,area,year))
pp02<-aggregate(PP05~solar_term+area+year,
                        data=pp01,mean,na.rm=TRUE)
n_pp25<-subset(pp02,area=='north')
s_pp25<-subset(pp02,area=='south')

#North for ploting  for PP02
ggplot(data=n_pp25[1:72,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp25[73:144,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp25[145:216,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=n_pp25[217:264,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)  

一小時最大降水量 In South

#South for ploting  for PP02
ggplot(data=s_pp25[1:72,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp25[73:144,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp25[145:216,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.)

ggplot(data=s_pp25[217:264,],aes(solar_term,PP05,colour=as.factor(year)))+geom_point()+geom_line()+facet_grid(year~.) 
## Warning: Removed 10 rows containing missing values (geom_point).

R Markdown

library(e1071)
## Warning: package 'e1071' was built under R version 3.2.5
rh<-ns_weather_removed_data_solar[ns_weather_removed_data_solar$RH04>0,]
rh01_solar<-aggregate(RH04~solar_term+area,
                        data=rh,mean,na.rm=TRUE)
rh01<-subset(rh,,select=c(RH04,solar_term_accu,solar_term,area,year))
rh02<-aggregate(RH04~solar_term+area+year,
                        data=rh01,mean,na.rm=TRUE)
n_rh04<-subset(rh02,area=='north')
s_rh04<-subset(rh02,area=='south')
###

north_ad<-north_ad_solar1[north_ad_solar1$solar_term %in% c(9,10,11),]
south_ad<-south_ad_solar1[south_ad_solar1$solar_term %in% c(9,10,11),]

n_tx<-n_tx02[n_tx02$solar_term %in% c(9,10,11),]
s_tx<-s_tx02[s_tx02$solar_term %in% c(9,10,11),]

n_rhmax<-n_rh02[n_rh02$solar_term %in% c(9,10,11),]
s_rhmax<-s_rh02[s_rh02$solar_term %in% c(9,10,11),]

n_rhmin<-n_rh04[n_rh04$solar_term %in% c(9,10,11),]
s_rhmin<-s_rh04[s_rh04$solar_term %in% c(9,10,11),]



n_pp_total<-n_pp21[n_pp21$solar_term %in% c(9,10,11),]
s_pp_total<-s_pp21[s_pp21$solar_term %in% c(9,10,11),]

n_pp_hr<-n_pp22[n_pp22$solar_term %in% c(9,10,11),]
s_pp_hr<-s_pp22[s_pp22$solar_term %in% c(9,10,11),]

n_pp_10min<-n_pp23[n_pp23$solar_term %in% c(9,10,11),]
s_pp_10min<-s_pp23[s_pp23$solar_term %in% c(9,10,11),]

n_pp_1hr<-n_pp25[n_pp25$solar_term %in% c(9,10,11),]
s_pp_1hr<-s_pp25[s_pp25$solar_term %in% c(9,10,11),]

##combine
length(n_pp_1hr$PP05)
## [1] 33
nx<-cbind(north_ad$solar_term,north_ad$year,north_ad$num,
          n_tx$TX,n_rhmax$RH02,n_rhmin$RH04,n_pp_total$PP01,
          n_pp_hr$PP02,n_pp_10min$PP03,n_pp_1hr$PP05)
nx<-data.frame(nx)
names(nx)<-c('solar_term','year','num','TX','rhmax','rhmin',
             'pp_total','pp_hr','pp_10min','pp_1hr')
north_fit<-lm(num~TX+rhmax+rhmin+pp_total+pp_hr+pp_10min+pp_1hr,data=nx)
summary(north_fit)
## 
## Call:
## lm(formula = num ~ TX + rhmax + rhmin + pp_total + pp_hr + pp_10min + 
##     pp_1hr, data = nx)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.2359  -5.5965  -0.4763   4.0662  14.2874 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 190.4785    61.9084   3.077  0.00502 **
## TX           -3.3401     2.0440  -1.634  0.11477   
## rhmax        -1.3156     0.7336  -1.793  0.08501 . 
## rhmin         0.8751     0.5480   1.597  0.12284   
## pp_total      0.1067     0.5714   0.187  0.85335   
## pp_hr        -2.4315     1.4876  -1.635  0.11467   
## pp_10min      1.6046     4.4921   0.357  0.72394   
## pp_1hr        1.4806     2.0937   0.707  0.48601   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.064 on 25 degrees of freedom
## Multiple R-squared:  0.3264, Adjusted R-squared:  0.1379 
## F-statistic: 1.731 on 7 and 25 DF,  p-value: 0.1472
##south
sx<-cbind(south_ad$solar_term,south_ad$year,south_ad$num,
          s_tx$TX,s_rhmax$RH02,s_rhmin$RH04,s_pp_total$PP01,
          s_pp_hr$PP02,s_pp_10min$PP03,s_pp_1hr$PP05)
sx<-data.frame(sx)
names(sx)<-c('solar_term','year','num','TX','rhmax','rhmin',
             'pp_total','pp_hr','pp_10min','pp_1hr')
south_fit<-lm(num~TX+rhmax+rhmin+pp_total+pp_hr+pp_10min+pp_1hr,data=sx)
summary(south_fit)
## 
## Call:
## lm(formula = num ~ TX + rhmax + rhmin + pp_total + pp_hr + pp_10min + 
##     pp_1hr, data = sx)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.881 -1.448 -0.075  2.212  6.012 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -26.550857  24.329727  -1.091    0.286
## TX            0.903543   0.876778   1.031    0.313
## rhmax         0.339130   0.304468   1.114    0.276
## rhmin        -0.002708   0.229596  -0.012    0.991
## pp_total     -0.188898   0.178404  -1.059    0.300
## pp_hr        -1.006291   0.759560  -1.325    0.197
## pp_10min      0.665478   1.334354   0.499    0.622
## pp_1hr        0.288923   0.823558   0.351    0.729
## 
## Residual standard error: 3.041 on 25 degrees of freedom
## Multiple R-squared:  0.4289, Adjusted R-squared:  0.269 
## F-statistic: 2.682 on 7 and 25 DF,  p-value: 0.03232