set.seed(100)
d <- diamonds[sample(nrow(diamonds), 1000), ]
d
## Source: local data frame [1,000 x 10]
##
## carat cut color clarity depth table price x y z
## (dbl) (fctr) (fctr) (fctr) (dbl) (dbl) (int) (dbl) (dbl) (dbl)
## 1 1.01 Very Good D SI1 62.1 59 6630 6.37 6.41 3.97
## 2 0.90 Ideal D SI1 62.4 55 5656 6.15 6.19 3.85
## 3 0.30 Ideal D SI1 61.6 56 709 4.34 4.30 2.66
## 4 0.30 Very Good G VS1 62.0 60 565 4.27 4.31 2.66
## 5 2.06 Premium I SI2 61.0 61 13912 8.18 8.10 5.02
## 6 1.56 Very Good G VVS1 59.7 59 15334 7.48 7.57 4.49
## 7 0.51 Premium E SI1 61.8 58 1443 5.15 5.11 3.17
## 8 1.16 Very Good E VS2 62.1 58 8520 6.63 6.70 4.14
## 9 0.32 Premium E VS2 61.2 59 702 4.40 4.43 2.70
## 10 1.08 Ideal G SI2 61.9 57 4544 6.55 6.57 4.06
## .. ... ... ... ... ... ... ... ... ... ...
plot_ly(d, x = carat, y = price, text = paste("Clarity: ", clarity),
mode = "markers", color = carat, size = carat)
### several box plots
plot_ly(ggplot2::diamonds, y = price, color = cut, type = "box")
df <- read.csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_world_gdp_with_codes.csv')
# light grey boundaries
l <- list(color = toRGB("grey"), width = 0.5)
# specify map projection/options
g <- list(
showframe = FALSE,
showcoastlines = FALSE,
projection = list(type = 'Mercator')
)
plot_ly(df, z = GDP..BILLIONS., text = COUNTRY, locations = CODE, type = 'choropleth',
color = GDP..BILLIONS., colors = 'Blues', marker = list(line = l),
colorbar = list(tickprefix = '$', title = 'GDP Billions US$')) %>%
layout(title = '2014 Global GDP<br>Source:<a href="https://www.cia.gov/library/publications/the-world-factbook/fields/2195.html">CIA World Factbook</a>',
geo = g)