PROCESOS ESTOCASTICOS TALLER 2
ESPECIALIZACIÓN EN DISEÑO DE REDES TELEMÁTICAS
PROCESOS ESTOCÁSTICOS
Presentado a:
Carlos Lesmes
Presentado por:
Jorge Andrés Chinome Reyes
Fredy Reinaldo Pineda Pedraza
SEGUNDA EVALUACIÓN DISTRIBUCIONES CONTINUAS
\[P(X>a+b|X>a)=P(X>b)\] Respuesta: \[P(X>a+b|X>a)=\frac{P(X>a+b)}{P(X>a)}\] \[P(X>a+b|X>a)=\frac{1-P(X<a+b)}{1-P(X<a)}\] \[P(X>a+b|X>a)=\frac{1-(1-e^{-\lambda(a+b)})}{1-(1-e^{-\lambda a})}\] \[P(X>a+b|X>a)=\frac{e^{-\lambda(a+b)}}{e^{-\lambda a}}\] \[P(X>a+b|X>a)=e^{-\lambda b}\] Dado que: \[f(x)=\lambda(e^{-\lambda x})\] \[F(x)=1-\lambda(e^{-\lambda x})\] \[P(X<X)=1-\lambda(e^{-\lambda x})\] Entonces: \[P(X>a+b|X>a)=1-(1-e^{-\lambda b})\] \[P(X>a+b|X>a)=1-F(b)\] \[P(X>a+b|X>a)=P(X>b)\]
x: Tiempo de servicio en minutos \[E(X)=3.2 min=\frac{1}{\lambda}\] \[\lambda=\frac{1}{3.2}\] \[f(x)=\frac{1}{3.2}e^{-\frac{1}{3.2}x}\]
\[P(X>2)=1-e^{-\frac{1}{3.2}x}\] \[F(X)=1-e^{-\frac{1}{3.2}x}\]
lambda=1/3.2
1-pexp(2,lambda)
## [1] 0.5352614
\[P(X>4|X>2)=P(X>2)\]
(1-pexp(4,lambda))/(1-pexp(2,lambda))
## [1] 0.5352614
Varianza
var=1/(lambda)^2
var
## [1] 10.24
Desviación estándar
sqrt(var)
## [1] 3.2
Velocidad=19
\[\mu=14\]
mu=14
\[\sigma=2.3\]
sigma=2.3
1-pnorm(Velocidad,mu,sigma)
## [1] 0.01485583
Velocidad1=15
Velocidad2=18
pnorm(Velocidad2,mu,sigma)-pnorm(Velocidad1,mu,sigma)
## [1] 0.2908542
qnorm(0.94,14,2.3)
## [1] 17.57598
Tiempo1=10
\[\mu=30\]
mu1=30
\[\sigma=10\]
sigma1=10
pnorm(Tiempo1,mu1,sigma1)
## [1] 0.02275013
\[\mu=30\] \[\sigma=10\] Tiempo mínimo del 5% = 0.05
tmin=0.05
qnorm(tmin, mu1, sigma1)
## [1] 13.55146
llamadas=8
\[\mu=8\]
mu2=8
\[\sigma=2.83\]
sigma2=2.83
1-pnorm(llamadas,mu2,sigma2)
## [1] 0.5
llamadas1=6
pnorm(llamadas,mu2,sigma2)-pnorm(llamadas1,mu2,sigma2)
## [1] 0.2601278
Promedio \[E(X)=\frac{1}{\lambda}\] \[E(X)=0.5\] Varianza \[V(X)=\frac{1}{4}\] \[V(X)=0.25\]
espera=1
lambda1=2
pexp(espera,lambda1)
## [1] 0.8646647
Tiempo=30
punif(5,0,Tiempo)
## [1] 0.1666667
punif(10,0,Tiempo)
## [1] 0.3333333
1-punif(25,0,Tiempo)
## [1] 0.1666667
pnorm(1)-pnorm(-1)
## [1] 0.6826895
pnorm(2)-pnorm(-2)
## [1] 0.9544997
pnorm(3)-pnorm(-3)
## [1] 0.9973002
\[\gamma=2\]
gamma=2
\[\kappa=15\]
kappa=15
Pareto \[F(x)=1-\left(\frac{\kappa}{x}\right)^{\gamma}\]
x5=40
x5
## [1] 40
\[1-f(40)\]
1-(1-(kappa/x5)^gamma)
## [1] 0.140625
X1=30
\[f(30)\]
1-(kappa/X1)^gamma
## [1] 0.75
X2=60
\[f(60)\]
1-(kappa/X2)^gamma
## [1] 0.9375
\[P(X>30|X<60)\]
(1-(kappa/X2)^gamma)-(1-(kappa/X1)^gamma)
## [1] 0.1875
\[\gamma=1.5\]
gamma1=1.5
\[\kappa=3.2\]
kappa1=3.2
\[F(x)=1-\left(\frac{\kappa}{x}\right)^{\gamma}\]
\[f(4)\]
X3=4
(kappa1/X3)^gamma1
## [1] 0.7155418
\[1-f(5)\]
X4=5
1-(kappa1/X4)^gamma1
## [1] 0.488
\[h(x)=\frac{f(x)}{1-F(x)}\] Calcule la tasa de riesgo de las distribuciones:
Si \[a<=x<b\] \[f(x)=\frac{1}{b-a}\] Si \[x<=a\] \[F(x)=\frac{x-a}{b-a}\] Entonces \[h(x)=\frac{\frac{1}{b-a}}{1-\frac{x-a}{b-a}}\] \[h(x)=\frac{\frac{1}{b-a}}{\frac{1}{1}-\frac{x-a}{b-a}}\] \[h(x)=\frac{\frac{1}{b-a}}{\frac{b-a}{b-a}-\frac{x-a}{b-a}}\] \[h(x)=\frac{\frac{1}{b-a}}{\frac{b-a-x+a}{b-a}}\] \[h(x)=\frac{\frac{1}{b-a}}{\frac{b-x}{b-a}}\] \[h(x)=\frac{{b-a}}{(b-a)(b-x)}\] \[h(x)=\frac{1}{b-x}\]
Si \[x>=0\] \[f(x)=\lambda e^{-\lambda x}\] Y \[F(x)=1-e^{-\lambda x}\] Entonces \[h(x)=\frac{\lambda e^{-\lambda x}}{1-(1-e^{-\lambda x})}\] \[h(x)=\frac{\lambda e^{-\lambda x}}{1-1+e^{-\lambda x})}\] \[h(x)=\frac{\lambda e^{-\lambda x}}{e^{-\lambda x}}\] \[h(x)=\lambda\]
Si \[x>=\kappa\] \[f(x)=\frac{\gamma \kappa^{\gamma }}{x^{\gamma +1}}\] Y \[F(x)=1-\left(\frac{\kappa}{x}\right)^{\gamma}\] Entonces \[h(x)=\frac{\frac{\gamma \kappa^{\gamma}}{x^{\gamma +1}}}{1-(1-\left(\frac{\kappa}{x}\right)^{\gamma})}\] \[h(x)=\frac{\frac{\gamma \kappa^{\gamma}}{x^{\gamma +1}}}{1-1+\left(\frac{\kappa}{x}\right)^{\gamma}}\] \[h(x)=\frac{\frac{\gamma \kappa^{\gamma}}{x^{\gamma +1}}}{\left(\frac{\kappa}{x}\right)^{\gamma}}\] \[h(x)=\frac{\frac{\gamma \kappa^{\gamma}}{x^{\gamma +1}}}{\frac{\kappa^{\gamma}}{x^{\gamma}}}\] \[h(x)=\frac{(\gamma \kappa^{\gamma})(x^{\gamma})}{(x^{\gamma +1})(\kappa^{\gamma})}\] \[h(x)=\frac{(\gamma)(\kappa^{\gamma})(x^{\gamma})}{x^{\gamma}(x^{1})(\kappa^{\gamma})}\] \[h(x)=\frac{\gamma}{x}\]
\[f(x)=\lambda{e^{-\lambda x}}\] Si \[\zeta(f(t))=\int_{0}^{\infty}e^{-s t}f(t)dx\] Entonces \[L(S)=\int_{0}^{\infty}e^{-s x}\lambda{e^{-\lambda x}}dx\] \[L(S)=\lambda\int_{0}^{\infty}e^{x(-s-\lambda)}dx\] \[L(S)=\frac{-\lambda e^{-x(\lambda+s)}}{\lambda -s}\ |_{0}^{\infty}\] Donde \[e^{\infty}=0,e^{0}=1\] \[L(S)=\frac{\lambda}{\lambda-s}\] \[L'(S)=\frac{d}{dx}\frac{\lambda}{\lambda-s}=\frac{\lambda}{(\lambda-s)^2}\]
\[CV(X)=\frac{\sigma x}{E(X)}\]
Calcule el coeficiente de variación para las distribuciones:
\[E(X)=\frac{a+b}{2}\] \[V(X)=\frac{(b-a)^2}{12}\] \[\sigma x=\sqrt{V(X)}=\sqrt{\frac{(b-a)^2}{12}}\] Entonces \[CV(X)=\frac{\sqrt{\frac{(b-a)^2}{12}}}{\frac{a+b}{2}}\] \[CV(X)=\frac{\frac{b-a}{\sqrt{12}}}{\frac{a+b}{2}}\] \[CV(X)=\frac{2(b-a)}{\sqrt{12}(a+b)}\]
\[E(X)=\frac{1}{\lambda}\] \[V(X)=\frac{1}{\lambda ^2}\] \[\sigma x=\sqrt{V(X)}=\sqrt{\frac{1}{\lambda ^2}}\] Entonces \[CV(X)=\frac{\sqrt{\frac{1}{\lambda ^2}}}{\frac{1}{\lambda}}\] \[CV(X)=\frac{\frac{1}{\lambda}}{\frac{1}{\lambda}}=1\]
\[E(X)=\frac{\kappa \gamma}{\gamma-1}\] \[V(X)=\frac{r q}{p^2}\] \[\sigma x=\sqrt{V(X)}=\sqrt{\frac{r q}{p^2}}\] Entonces \[CV(X)=\frac{\sqrt{\frac{r q}{p^2}}}{\frac{\kappa \gamma}{\gamma-1}}\] \[CV(X)=\frac{\frac{\sqrt {rq}}{p}}{\frac{\kappa \gamma}{\gamma-1}}\] \[CV(X)=\frac{(\gamma-1)\sqrt {rq}}{p(\kappa \gamma)}\]
x<-seq(0,2,length=100)
y<-dexp(x,2)
plot(x,y,type="l", lwd=3, col="yellow", main="exponencial lambda = 2")
x<-seq(0,2,length=100)
y<-dexp(x,3)
plot(x,y,type="l", lwd=3, col="red", main="exponencial lambda = 3")
Num1=rexp(2000,2)
Num2=rexp(2000,3)
suma=sum(Num1,Num2)
suma
## [1] 1635.712
minimo=min(Num1,Num2)
minimo
## [1] 5.11475e-05
maximo=max(Num1,Num2)
maximo
## [1] 4.165244
hist(Num1,col="green",labels=TRUE)
hist(Num2,breaks=12,col="lightblue",border="red")
hist(suma,col="green",labels=TRUE)
hist(minimo,breaks=12,col="lightblue",border="red")
hist(maximo,col="pink",labels=TRUE)
Media (Mean)
mean(Num1)
## [1] 0.4888372
mean(Num2)
## [1] 0.3290186
Desviación estandar (Standard Deviation)
sd(Num1)
## [1] 0.4972234
sd(Num2)
## [1] 0.3372246
x<-seq(0,10,length=100)
y<-ppois(x,2)
plot(x,y,type="l", lwd=3, col="yellow", main="poisson lambda = 2")
x<-seq(0,10,length=100)
y<-ppois(x,3)
plot(x,y,type="l", lwd=3, col="red", main="poisson lambda = 3")
Num3=rpois(2000, 2)
Num4=rpois(2000, 2)
suma1=sum(Num3,Num4)
suma1
## [1] 8064
minimo1=min(Num3,Num4)
minimo1
## [1] 0
maximo1=max(Num3,Num4)
maximo1
## [1] 9
hist(Num3,col="brown",labels=TRUE)
hist(Num4,breaks=12,col="yellow",border="red")
hist(suma1,col="purple",labels=TRUE)
hist(minimo1,breaks=12,col="green",border="red")
hist(maximo1,col="red",labels=TRUE)
Media (Mean)
mean(Num3)
## [1] 1.988
mean(Num4)
## [1] 2.044
Desviación estandar (Standard Deviation)
sd(Num3)
## [1] 1.399227
sd(Num4)
## [1] 1.414943
\[\Phi(w)=E(e^{i w X})\] \[f(x)=\frac{1}{b-a}\] \[\Phi(w)=E(e^{iwx})=\int_{a}^{b}e^{iwx}f(x)dx\] \[\Phi(w)=\int_{a}^{b}e^{iwx}\left(\frac{1}{b-a}\right)dx\] Entonces \[\Phi(w)=\frac{1}{b-a}\frac{e^{iwx}}{iw}\mid_{a}^{b}\] \[\Phi(w)=\frac{1}{b-a}\left[\frac{e^{iwb}}{iw}-\frac{e^{iwa}}{iw}\right]\] \[\Phi(w)=\frac{e^{iwb}-e^{iwa}}{iw(b-a)}\]
\[\Phi(w)=E(e^{i w X})\] \[f(x)=\lambda e^{-\lambda x}\] \[\Phi(w)=E(e^{iwx})=\int_{0}^{\infty}e^{iwx}f(x)dx\] \[\Phi(w)=\int_{0}^{\infty}e^{iwx}\left(\lambda e^{-\lambda x}\right)dx\] \[\Phi(w)=\lambda\int_{0}^{\infty }e^{iwx}e^{-\lambda x}dx=\lambda \int_{0}^{\infty }e^{(iw-\lambda)x}dx \] Donde \[u=(iw-\lambda)x, du=(iw-\lambda)dx,dx=\frac{du}{(iw-\lambda)}\] Entonces \[\Phi(w)=\lambda \int_{0}^{\infty}\frac{e^{u} du}{iw-\lambda}\] \[\Phi(w)=\frac{\lambda e^{(iw-\lambda )x}}{iw-\lambda }\mid_{0}^{\infty}\] \[\Phi(w)=\frac{\lambda }{iw-\lambda } \]
\[\Phi(w)=E(e^{i w X})\] \[f(x)=\frac{1}{\sqrt{2\pi(\sigma)^2}}e^-\frac{(x-\mu)^2}{2\sigma ^2}\] \[\Phi(w)=E(e^{iwx})=\int_{-\infty}^{\infty}e^{iwx}f(x)dx\] \[\Phi(w)=\int_{-\infty}^{\infty}e^{iwx}\frac{1}{\sqrt{2\pi(\sigma)^2}}e^{-\frac{(x-\mu)^2}{2\sigma ^2}}dx\] \[\Phi(w)=\frac{1}{\sqrt{2\pi(\sigma)^2}}\int_{-\infty}^{\infty}e^{iwx}e^{-\frac{(x-\mu)^2}{2\sigma ^2}}dx\] \[\Phi(w)=\frac{1}{\sqrt{2\pi(\sigma)^2}}\int_{-\infty}^{\infty}e^{iwx-\frac{(x-\mu)^2}{2\sigma ^2}}dx\] \[\Phi(w)=\frac{1}{\sqrt{2\pi(\sigma)^2}}\int_{-\infty}^{\infty}e^{\frac{iwx(2\sigma ^2)-(x-\mu)^2}{2\sigma ^2}}dx\]
\[\Gamma(r)=\int_{0}^{\infty}x^{r-1}e^{-x}dx\] \[Para (r>0)\] Compruebe que:
\[\Gamma(1)=\int_{0}^{\infty}x^{r-1}e^{-x}\partial x=\int_{0}^{\infty}x^{1-1}e^{-x}dx\] \[\Gamma(1)=\int_{0}^{\infty}e^{-x}dx\] \[\Gamma(1)=1\]
\[\Gamma(r)=\int_{0}^{\infty}x^{r-1}e^{-x}dx\] Se integra por partes: \[ u=x^{r-1},du=(r-1)x^{r-2},v=-e^{-x},dv=e^{-x}dx\] \[\int u \partial v=u v-\int v du\] Entonces \[\Gamma(r)=-x^{r-1}e^{-x} \mid _{0}^{\infty}+(r-1)\int_{0}^{\infty }x^{r-2}e^{-x}dx\] \[\Gamma(r)=x^{r-1}+(r-1)\int_{0}^{\infty }x^{r-2}e^{-x}dx\]
\[f(x)=\frac{\lambda ^ r}{\Gamma(r)} x^{r-1} e^{-\lambda x}\] \[Para (x\geqslant0)\] Cuando r es un entero positivo se obtiene la distribución Erlang(r).
\[f(x)=\int_{0}^{\infty}\frac{\lambda ^r}{\Gamma(r)}x^{r-1}e^{-\lambda x}dx\] \[\frac{\lambda ^{r}}{\Gamma(r)}\int_{0}^{\infty}x^{r-1}e^{-\lambda x}dx\] Donde \[f(x)=\int_{0}^{\infty}\frac{\lambda ^r}{\Gamma(r)}x^{r-1}e^{-\lambda x}dx\] Si \[u=-\lambda x, x=-\frac{u}{\lambda}\] \[du=\lambda dx, dx=\frac{du}{\lambda}\] \[f(x)=\frac{\lambda ^r}{\Gamma(r)}\int_{0}^{\infty}\left(-\frac{u}{\lambda}\right)^{r-1}e^{u}\frac{du}{\lambda}\]
\[Mx(t)=-\int_{0}^{\infty}\ e^{-tx} f(x)\] \[\int_{0}^{\infty}\ e^{-tx}\frac{\lambda ^r}{\gamma(r)}x^{r-1}e^{-\lambda x}dx=\frac{\lambda ^r}{\gamma(r)}\int_{0}^{\infty}\ x^{r-1}e^{(t-\lambda)x}d(x)\] \[\mu=(\lambda-t)x=x=\frac{\mu}{\lambda-t}\] \[ d\mu=(\lambda-t)dx=dx=\frac{d\mu}{\lambda-t}\] \[\frac{\lambda ^r}{\gamma(r)}\int_{0}^{\infty}\ x^{r-1}e^{-(\lambda-t)^{x}}dx=\frac{\lambda ^r}{\gamma(r)}\int_{0}^{\infty}\ (\frac{\mu}{\lambda-t})^{r-1}e^{-\mu}\frac{d\mu}{\lambda-t}\] \[\frac{\lambda ^r}{\gamma(r)(\lambda-t)^{r}}\int_{0}^{\infty}\mu^{r-1}e^{-\mu}=\frac{\lambda ^{r}\gamma(r)}{\gamma(r)(\lambda-t)^{r}}\] \[Mx(t)=\frac{\lambda ^r}{(\gamma-t)^r}\]
Media:
\[E(x)=-\int_{0}^{\infty}\ xf(x)dx\] \[E(x)=-\int_{0}^{\infty}\ x\frac{\lambda r}{(\gamma (r)}x^{r-1}e^{-\lambda x}dx=\frac{\lambda ^r}{(\gamma (r)}\int_{0}^{\infty}\ x^{r}e^{-\lambda r}dx\] \[\mu=\lambda x\] \[ d\mu=\lambda dx\] \[\frac{\lambda ^r}{(\gamma (r)}\int_{0}^{\infty}\ (\frac{\mu}{\lambda})^r\ e^{-\mu}d\mu\]
Donde
\[\int_{0}^{\infty}\ \mu^{r} e^{-\mu}d\mu=\gamma(r+1)\] \[\frac{\lambda(r+1)}{(\lambda \gamma (r)}=\frac{r}{\lambda}\]
Varianza:
\[V(x) = E(x^2)-E(x)^2\] \[E(x^2)=\int_{0}^{\infty}\ x^2 \frac{\lambda ^r}{(\gamma (r)}x^{r-1}e^{-\lambda x}dx=\frac{\lambda ^r}{(\gamma (r)}\int_{0}^{\infty}\ x^{r+1}e^{-\lambda x}dx\] \[\frac{\lambda ^r}{(\gamma (r)} \int_{0}^{\infty}\ (\frac{\mu}{\lambda})^{r+1} e^{-\mu} \frac{d\mu}{\lambda}=\frac{1}{\lambda ^{2}\gamma(r)}\int_{0}^{\infty}\ \mu^{r+1}e^{-\mu}d\mu\]
Donde
\[\int_{0}^{\infty}\ \mu^{r+1} e^{-\mu}d\mu=\gamma(r+2)\] \[=\frac{\gamma(r+2)}{\lambda ^2 \gamma (r)}=\frac{(r+1)\gamma(r+1)}{\lambda ^2 \gamma (r)}=\frac{(r+1)r\gamma(r)}{\lambda ^2 \gamma (r)}=\frac{r(r+1)}{\lambda ^2}\] \[V(x)=\frac{r(r+1)}{\lambda ^2}-(\frac{\lambda}{r})^2=\frac{r^{2}+r-r^{2}}{\lambda ^2}=\frac{x}{\lambda ^2}\]